Cargando…
Workflow to develop 3D designed personalized neonatal CPAP masks using iPhone structured light facial scanning
BACKGROUND: Continuous positive airway pressure (CPAP) is a common mode of respiratory support used in neonatal intensive care units. In preterm infants, nasal CPAP (nCPAP) therapy is often delivered via soft, biocompatible nasal mask suitable for long-term direct skin contact and held firmly agains...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341126/ https://www.ncbi.nlm.nih.gov/pubmed/35913689 http://dx.doi.org/10.1186/s41205-022-00155-7 |
_version_ | 1784760546190426112 |
---|---|
author | Kamath, Amika A. Kamath, Marielle J. Ekici, Selin Stans, Anna Sofia Colby, Christopher E. Matsumoto, Jane M. Wylam, Mark E. |
author_facet | Kamath, Amika A. Kamath, Marielle J. Ekici, Selin Stans, Anna Sofia Colby, Christopher E. Matsumoto, Jane M. Wylam, Mark E. |
author_sort | Kamath, Amika A. |
collection | PubMed |
description | BACKGROUND: Continuous positive airway pressure (CPAP) is a common mode of respiratory support used in neonatal intensive care units. In preterm infants, nasal CPAP (nCPAP) therapy is often delivered via soft, biocompatible nasal mask suitable for long-term direct skin contact and held firmly against the face. Limited sizes of nCPAP mask contribute to mal-fitting related complications and adverse outcomes in this fragile population. We hypothesized that custom-fit nCPAP masks will improve the fit with less skin pressure and strap tension improving efficacy and reducing complications associated with nCPAP therapy in neonates. METHODS: After IRB approval and informed consent, we evaluated several methods to develop 3D facial models to test custom 3D nCPAP masks. These methods included camera-based photogrammetry, laser scanning and structured light scanning using a Bellus3D Face Camera Pro and iPhone X running either Bellus3D FaceApp for iPhone, or Heges application. This data was used to provide accurate 3D neonatal facial models. Using CAD software nCPAP inserts were designed to be placed between proprietary nCPAP mask and the model infant’s face. The resulted 3D designed nCPAP mask was form fitted to the model face. Subsequently, nCPAP masks were connected to a ventilator to provide CPAP and calibrated pressure sensors and co-linear tension sensors were placed to measures skin pressure and nCPAP mask strap tension. RESULTS: Photogrammetry and laser scanning were not suited to the neonatal face. However, structured light scanning techniques produced accurate 3D neonatal facial models. Individualized nCPAP mask inserts manufactured using 3D printed molds and silicon injection were effective at decreasing surface pressure and mask strap pressure in some cases by more than 50% compared to CPAP masks without inserts. CONCLUSIONS: We found that readily available structured light scanning devices such as the iPhone X are a low cost, safe, rapid, and accurate tool to develop accurate models of preterm infant facial topography. Structured light scanning developed 3D nCPAP inserts applied to commercially available CPAP masks significantly reduced skin pressure and strap tension at clinically relevant CPAP pressures when utilized on model neonatal faces. This workflow maybe useful at producing individualized nCPAP masks for neonates reducing complications due to misfit. |
format | Online Article Text |
id | pubmed-9341126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-93411262022-08-02 Workflow to develop 3D designed personalized neonatal CPAP masks using iPhone structured light facial scanning Kamath, Amika A. Kamath, Marielle J. Ekici, Selin Stans, Anna Sofia Colby, Christopher E. Matsumoto, Jane M. Wylam, Mark E. 3D Print Med Methodology BACKGROUND: Continuous positive airway pressure (CPAP) is a common mode of respiratory support used in neonatal intensive care units. In preterm infants, nasal CPAP (nCPAP) therapy is often delivered via soft, biocompatible nasal mask suitable for long-term direct skin contact and held firmly against the face. Limited sizes of nCPAP mask contribute to mal-fitting related complications and adverse outcomes in this fragile population. We hypothesized that custom-fit nCPAP masks will improve the fit with less skin pressure and strap tension improving efficacy and reducing complications associated with nCPAP therapy in neonates. METHODS: After IRB approval and informed consent, we evaluated several methods to develop 3D facial models to test custom 3D nCPAP masks. These methods included camera-based photogrammetry, laser scanning and structured light scanning using a Bellus3D Face Camera Pro and iPhone X running either Bellus3D FaceApp for iPhone, or Heges application. This data was used to provide accurate 3D neonatal facial models. Using CAD software nCPAP inserts were designed to be placed between proprietary nCPAP mask and the model infant’s face. The resulted 3D designed nCPAP mask was form fitted to the model face. Subsequently, nCPAP masks were connected to a ventilator to provide CPAP and calibrated pressure sensors and co-linear tension sensors were placed to measures skin pressure and nCPAP mask strap tension. RESULTS: Photogrammetry and laser scanning were not suited to the neonatal face. However, structured light scanning techniques produced accurate 3D neonatal facial models. Individualized nCPAP mask inserts manufactured using 3D printed molds and silicon injection were effective at decreasing surface pressure and mask strap pressure in some cases by more than 50% compared to CPAP masks without inserts. CONCLUSIONS: We found that readily available structured light scanning devices such as the iPhone X are a low cost, safe, rapid, and accurate tool to develop accurate models of preterm infant facial topography. Structured light scanning developed 3D nCPAP inserts applied to commercially available CPAP masks significantly reduced skin pressure and strap tension at clinically relevant CPAP pressures when utilized on model neonatal faces. This workflow maybe useful at producing individualized nCPAP masks for neonates reducing complications due to misfit. Springer International Publishing 2022-08-01 /pmc/articles/PMC9341126/ /pubmed/35913689 http://dx.doi.org/10.1186/s41205-022-00155-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Methodology Kamath, Amika A. Kamath, Marielle J. Ekici, Selin Stans, Anna Sofia Colby, Christopher E. Matsumoto, Jane M. Wylam, Mark E. Workflow to develop 3D designed personalized neonatal CPAP masks using iPhone structured light facial scanning |
title | Workflow to develop 3D designed personalized neonatal CPAP masks using iPhone structured light facial scanning |
title_full | Workflow to develop 3D designed personalized neonatal CPAP masks using iPhone structured light facial scanning |
title_fullStr | Workflow to develop 3D designed personalized neonatal CPAP masks using iPhone structured light facial scanning |
title_full_unstemmed | Workflow to develop 3D designed personalized neonatal CPAP masks using iPhone structured light facial scanning |
title_short | Workflow to develop 3D designed personalized neonatal CPAP masks using iPhone structured light facial scanning |
title_sort | workflow to develop 3d designed personalized neonatal cpap masks using iphone structured light facial scanning |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341126/ https://www.ncbi.nlm.nih.gov/pubmed/35913689 http://dx.doi.org/10.1186/s41205-022-00155-7 |
work_keys_str_mv | AT kamathamikaa workflowtodevelop3ddesignedpersonalizedneonatalcpapmasksusingiphonestructuredlightfacialscanning AT kamathmariellej workflowtodevelop3ddesignedpersonalizedneonatalcpapmasksusingiphonestructuredlightfacialscanning AT ekiciselin workflowtodevelop3ddesignedpersonalizedneonatalcpapmasksusingiphonestructuredlightfacialscanning AT stansannasofia workflowtodevelop3ddesignedpersonalizedneonatalcpapmasksusingiphonestructuredlightfacialscanning AT colbychristophere workflowtodevelop3ddesignedpersonalizedneonatalcpapmasksusingiphonestructuredlightfacialscanning AT matsumotojanem workflowtodevelop3ddesignedpersonalizedneonatalcpapmasksusingiphonestructuredlightfacialscanning AT wylammarke workflowtodevelop3ddesignedpersonalizedneonatalcpapmasksusingiphonestructuredlightfacialscanning |