Cargando…
An ensemble learning strategy for panel time series forecasting of excess mortality during the COVID-19 pandemic()
Quantifying and analyzing excess mortality in crises such as the ongoing COVID-19 pandemic is crucial for policymakers. Traditional measures fail to take into account differences in the level, long-term secular trends, and seasonal patterns in all-cause mortality across countries and regions. This p...
Autores principales: | Ashofteh, Afshin, Bravo, Jorge M., Ayuso, Mercedes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341166/ https://www.ncbi.nlm.nih.gov/pubmed/35938053 http://dx.doi.org/10.1016/j.asoc.2022.109422 |
Ejemplares similares
-
Blood Glucose Level Time Series Forecasting: Nested Deep Ensemble Learning Lag Fusion
por: Khadem, Heydar, et al.
Publicado: (2023) -
Forecasting Corn Yield With Machine Learning Ensembles
por: Shahhosseini, Mohsen, et al.
Publicado: (2020) -
AI in Healthcare: Time-Series Forecasting Using Statistical, Neural, and Ensemble Architectures
por: Kaushik, Shruti, et al.
Publicado: (2020) -
CoBiD-net: a tailored deep learning ensemble model for time series forecasting of covid-19
por: Shastri, Sourabh, et al.
Publicado: (2021) -
Statistical postprocessing of ensemble forecasts
por: Vannitsem, Stéphane, et al.
Publicado: (2018)