Cargando…
CT-Only Radiotherapy: An Exploratory Study for Automatic Dose Prediction on Rectal Cancer Patients Via Deep Adversarial Network
PURPOSE: Current deep learning methods for dose prediction require manual delineations of planning target volume (PTV) and organs at risk (OARs) besides the original CT images. Perceiving the time cost of manual contour delineation, we expect to explore the feasibility of accelerating the radiothera...
Autores principales: | Cui, Jiaqi, Jiao, Zhengyang, Wei, Zhigong, Hu, Xiaolin, Wang, Yan, Xiao, Jianghong, Peng, Xingchen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341484/ https://www.ncbi.nlm.nih.gov/pubmed/35924164 http://dx.doi.org/10.3389/fonc.2022.875661 |
Ejemplares similares
-
Treatment plan comparison of volumetric‐modulated arc therapy to intensity‐modulated radiotherapy in lung stereotactic body radiotherapy using either 6‐ or 10‐MV photon energies
por: Wei, Zhigong, et al.
Publicado: (2022) -
Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning
por: Bird, David, et al.
Publicado: (2021) -
Structurally-constrained optical-flow-guided adversarial generation of synthetic CT for MR-only radiotherapy treatment planning
por: Vajpayee, Rajat, et al.
Publicado: (2022) -
Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy
por: Gao, Liugang, et al.
Publicado: (2021) -
Influence of target dose heterogeneity on dose sparing of normal tissue in peripheral lung tumor stereotactic body radiation therapy
por: Wei, Zhigong, et al.
Publicado: (2021)