Cargando…

Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields

The development of high-fidelity mechanical property prediction models for the design of polycrystalline materials relies on large volumes of microstructural feature data. Concurrently, at these same scales, the deformation fields that develop during mechanical loading can be highly heterogeneous. S...

Descripción completa

Detalles Bibliográficos
Autores principales: Stinville, J. C., Hestroffer, J. M., Charpagne, M. A., Polonsky, A. T., Echlin, M. P., Torbet, C. J., Valle, V., Nygren, K. E., Miller, M. P., Klaas, O., Loghin, A., Beyerlein, I. J., Pollock, T. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9343453/
https://www.ncbi.nlm.nih.gov/pubmed/35915100
http://dx.doi.org/10.1038/s41597-022-01525-w
_version_ 1784761010441158656
author Stinville, J. C.
Hestroffer, J. M.
Charpagne, M. A.
Polonsky, A. T.
Echlin, M. P.
Torbet, C. J.
Valle, V.
Nygren, K. E.
Miller, M. P.
Klaas, O.
Loghin, A.
Beyerlein, I. J.
Pollock, T. M.
author_facet Stinville, J. C.
Hestroffer, J. M.
Charpagne, M. A.
Polonsky, A. T.
Echlin, M. P.
Torbet, C. J.
Valle, V.
Nygren, K. E.
Miller, M. P.
Klaas, O.
Loghin, A.
Beyerlein, I. J.
Pollock, T. M.
author_sort Stinville, J. C.
collection PubMed
description The development of high-fidelity mechanical property prediction models for the design of polycrystalline materials relies on large volumes of microstructural feature data. Concurrently, at these same scales, the deformation fields that develop during mechanical loading can be highly heterogeneous. Spatially correlated measurements of 3D microstructure and the ensuing deformation fields at the micro-scale would provide highly valuable insight into the relationship between microstructure and macroscopic mechanical response. They would also provide direct validation for numerical simulations that can guide and speed up the design of new materials and microstructures. However, to date, such data have been rare. Here, a one-of-a-kind, multi-modal dataset is presented that combines recent state-of-the-art experimental developments in 3D tomography and high-resolution deformation field measurements.
format Online
Article
Text
id pubmed-9343453
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93434532022-08-03 Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields Stinville, J. C. Hestroffer, J. M. Charpagne, M. A. Polonsky, A. T. Echlin, M. P. Torbet, C. J. Valle, V. Nygren, K. E. Miller, M. P. Klaas, O. Loghin, A. Beyerlein, I. J. Pollock, T. M. Sci Data Data Descriptor The development of high-fidelity mechanical property prediction models for the design of polycrystalline materials relies on large volumes of microstructural feature data. Concurrently, at these same scales, the deformation fields that develop during mechanical loading can be highly heterogeneous. Spatially correlated measurements of 3D microstructure and the ensuing deformation fields at the micro-scale would provide highly valuable insight into the relationship between microstructure and macroscopic mechanical response. They would also provide direct validation for numerical simulations that can guide and speed up the design of new materials and microstructures. However, to date, such data have been rare. Here, a one-of-a-kind, multi-modal dataset is presented that combines recent state-of-the-art experimental developments in 3D tomography and high-resolution deformation field measurements. Nature Publishing Group UK 2022-08-01 /pmc/articles/PMC9343453/ /pubmed/35915100 http://dx.doi.org/10.1038/s41597-022-01525-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Stinville, J. C.
Hestroffer, J. M.
Charpagne, M. A.
Polonsky, A. T.
Echlin, M. P.
Torbet, C. J.
Valle, V.
Nygren, K. E.
Miller, M. P.
Klaas, O.
Loghin, A.
Beyerlein, I. J.
Pollock, T. M.
Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields
title Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields
title_full Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields
title_fullStr Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields
title_full_unstemmed Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields
title_short Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields
title_sort multi-modal dataset of a polycrystalline metallic material: 3d microstructure and deformation fields
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9343453/
https://www.ncbi.nlm.nih.gov/pubmed/35915100
http://dx.doi.org/10.1038/s41597-022-01525-w
work_keys_str_mv AT stinvillejc multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT hestrofferjm multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT charpagnema multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT polonskyat multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT echlinmp multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT torbetcj multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT vallev multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT nygrenke multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT millermp multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT klaaso multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT loghina multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT beyerleinij multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields
AT pollocktm multimodaldatasetofapolycrystallinemetallicmaterial3dmicrostructureanddeformationfields