Cargando…

Determining the performance of a temperature sensor embedded into a mouthguard

OBJECTIVE: This study aimed to determine the steady-state errors of oral-based temperature sensors, that are embedded in mouthguards, using a robust assessment process. MATERIALS AND METHODS: Four electronic boards with temperature sensors were encapsulated in mouthguards made from ethylene-vinyl ac...

Descripción completa

Detalles Bibliográficos
Autores principales: de Almeida e Bueno, Leonardo, Milnthorpe, William, Bergmann, Jeroen H. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9343656/
https://www.ncbi.nlm.nih.gov/pubmed/35915087
http://dx.doi.org/10.1038/s41405-022-00114-8
Descripción
Sumario:OBJECTIVE: This study aimed to determine the steady-state errors of oral-based temperature sensors, that are embedded in mouthguards, using a robust assessment process. MATERIALS AND METHODS: Four electronic boards with temperature sensors were encapsulated in mouthguards made from ethylene-vinyl acetate (EVA). The error and time to reach steady-state temperature were determined using a thermostatic water bath during three different conditions (34, 38.5 and 43 °C). Subsequently, a case study of one volunteer wearing the instrumented mouthguard is presented. RESULTS: The water bath tests showed that a mean absolute error of 0.2 °C was reached after a maximum of 690 s across all test conditions. The case study yielded an absolute error was 0.2 °C after 1110 s. CONCLUSION: These results show that an instrumented mouthguard with temperature sensing capabilities can yield a consistent steady-state error that is close to the clinical requirements across a range of temperatures. However, the time it takes to reach steady-state temperature needs to be considered for these systems to correctly interpret the outcomes.