Cargando…
Learning State-Variable Relationships in POMCP: A Framework for Mobile Robots
We address the problem of learning relationships on state variables in Partially Observable Markov Decision Processes (POMDPs) to improve planning performance. Specifically, we focus on Partially Observable Monte Carlo Planning (POMCP) and represent the acquired knowledge with a Markov Random Field...
Autores principales: | Zuccotto, Maddalena, Piccinelli, Marco, Castellini, Alberto, Marchesini, Enrico, Farinelli, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9343685/ https://www.ncbi.nlm.nih.gov/pubmed/35928541 http://dx.doi.org/10.3389/frobt.2022.819107 |
Ejemplares similares
-
Generalized Behavior Framework for Mobile Robots Teaming With Humans in Harsh Environments
por: Avram, Oliver, et al.
Publicado: (2022) -
Horizon: A Trajectory Optimization Framework for Robotic Systems
por: Ruscelli, Francesco, et al.
Publicado: (2022) -
A Simple Yet Effective Whole-Body Locomotion Framework for Quadruped Robots
por: Raiola, Gennaro, et al.
Publicado: (2020) -
A Socially Adaptable Framework for Human-Robot Interaction
por: Tanevska, Ana, et al.
Publicado: (2020) -
Autonomous control for miniaturized mobile robots in unknown pipe networks
por: Nguyen, T. L., et al.
Publicado: (2022)