Cargando…
Performance of a Chest Radiograph AI Diagnostic Tool for COVID-19: A Prospective Observational Study
PURPOSE: To conduct a prospective observational study across 12 U.S. hospitals to evaluate real-time performance of an interpretable artificial intelligence (AI) model to detect COVID-19 on chest radiographs. MATERIALS AND METHODS: A total of 95 363 chest radiographs were included in model training,...
Autores principales: | Sun, Ju, Peng, Le, Li, Taihui, Adila, Dyah, Zaiman, Zach, Melton-Meaux, Genevieve B., Ingraham, Nicholas E., Murray, Eric, Boley, Daniel, Switzer, Sean, Burns, John L., Huang, Kun, Allen, Tadashi, Steenburg, Scott D., Gichoya, Judy Wawira, Kummerfeld, Erich, Tignanelli, Christopher J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344211/ https://www.ncbi.nlm.nih.gov/pubmed/35923381 http://dx.doi.org/10.1148/ryai.210217 |
Ejemplares similares
-
A Prospective Observational Study to Investigate Performance of a Chest X-ray Artificial Intelligence Diagnostic Support Tool Across 12 U.S. Hospitals
por: Sun, Ju, et al.
Publicado: (2021) -
Evaluation of federated learning variations for COVID-19 diagnosis using chest radiographs from 42 US and European hospitals
por: Peng, Le, et al.
Publicado: (2022) -
AI pitfalls and what not to do: mitigating bias in AI
por: Gichoya, Judy Wawira, et al.
Publicado: (2023) -
Patient-specific COVID-19 resource utilization prediction using fusion AI model
por: Tariq, Amara, et al.
Publicado: (2021) -
AI recognition of patient race in medical imaging: a modelling study
por: Gichoya, Judy Wawira, et al.
Publicado: (2022)