Cargando…
Psychosocial markers of age at onset in bipolar disorder: a machine learning approach
BACKGROUND: Bipolar disorder is a chronic and severe mental health disorder. Early stratification of individuals into subgroups based on age at onset (AAO) has the potential to inform diagnosis and early intervention. Yet, the psychosocial predictors associated with AAO are unknown. AIMS: We aim to...
Autores principales: | Bolton, Sorcha, Joyce, Dan W., Gordon-Smith, Katherine, Jones, Lisa, Jones, Ian, Geddes, John, Saunders, Kate E. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344222/ https://www.ncbi.nlm.nih.gov/pubmed/35844202 http://dx.doi.org/10.1192/bjo.2022.536 |
Ejemplares similares
-
Bipolar disorder: Trimodal age‐at‐onset distribution
por: Bolton, Sorcha, et al.
Publicado: (2020) -
Mental health prior to and during the COVID‐19 pandemic in individuals with bipolar disorder: Insights from prospective longitudinal data
por: Lewis, Katie J. S., et al.
Publicado: (2022) -
Gambling problems in bipolar disorder in the UK: prevalence and distribution
por: Jones, Lisa, et al.
Publicado: (2015) -
A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder
por: Perez Arribas, Imanol, et al.
Publicado: (2018) -
Genetic Liabilities Differentiating Bipolar Disorder, Schizophrenia, and Major Depressive Disorder, and Phenotypic Heterogeneity in Bipolar Disorder
por: Richards, Alexander L., et al.
Publicado: (2022)