Cargando…
Applied Machine Learning for Spine Surgeons: Predicting Outcome for Patients Undergoing Treatment for Lumbar Disc Herniation Using PRO Data
STUDY DESIGN: Retrospective/prospective study. OBJECTIVE: Models based on preoperative factors can predict patients’ outcome at 1-year follow-up. This study measures the performance of several machine learning (ML) models and compares the results with conventional methods. METHODS: Inclusion criteri...
Autores principales: | Pedersen, Casper Friis, Andersen, Mikkel Østerheden, Carreon, Leah Yacat, Eiskjær, Søren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344505/ https://www.ncbi.nlm.nih.gov/pubmed/33203255 http://dx.doi.org/10.1177/2192568220967643 |
Ejemplares similares
-
Validating the predictive precision of the dialogue support tool on Danish patient cohorts
por: Pedersen, Casper Friis, et al.
Publicado: (2022) -
Usability and performance expectancy govern spine surgeons’ use of a clinical decision support system for shared decision-making on the choice of treatment of common lumbar degenerative disorders
por: Eiskjær, Søren, et al.
Publicado: (2023) -
Radiological Definitions of Sagittal Plane Segmental Instability in
the Degenerative Lumbar Spine – A Systematic Review
por: Elmose, Signe F., et al.
Publicado: (2022) -
Smoking Is an Independent Risk Factor of Reoperation Due to Recurrent Lumbar Disc Herniation
por: Andersen, Stina Brogård, et al.
Publicado: (2017) -
Shared decision making when patients consider surgery for lumbar herniated disc: development and test of a patient decision aid
por: Andersen, Stina Brogård, et al.
Publicado: (2019)