Cargando…
MID-UNet: Multi-input directional UNet for COVID-19 lung infection segmentation from CT images
Coronavirus Disease 2019 (COVID-19) has spread globally since the first case was reported in December 2019, becoming a world-wide existential health crisis with over 90 million total confirmed cases. Segmentation of lung infection from computed tomography (CT) scans via deep learning method has a gr...
Autores principales: | Chi, Jianning, Zhang, Shuang, Han, Xiaoying, Wang, Huan, Wu, Chengdong, Yu, Xiaosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344813/ https://www.ncbi.nlm.nih.gov/pubmed/35935468 http://dx.doi.org/10.1016/j.image.2022.116835 |
Ejemplares similares
-
TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense Skip Connection for Medical Image Segmentation
por: Tran, Song-Toan, et al.
Publicado: (2021) -
COVID TV-Unet: Segmenting COVID-19 chest CT images using connectivity imposed Unet
por: Saeedizadeh, Narges, et al.
Publicado: (2021) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022) -
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
A-DenseUNet: Adaptive Densely Connected UNet for Polyp Segmentation in Colonoscopy Images with Atrous Convolution
por: Safarov, Sirojbek, et al.
Publicado: (2021)