Cargando…
Identifying interactions in omics data for clinical biomarker discovery using symbolic regression
MOTIVATION: The identification of predictive biomarker signatures from omics and multi-omics data for clinical applications is an active area of research. Recent developments in assay technologies and machine learning (ML) methods have led to significant improvements in predictive performance. Howev...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344843/ https://www.ncbi.nlm.nih.gov/pubmed/35731214 http://dx.doi.org/10.1093/bioinformatics/btac405 |
_version_ | 1784761303871520768 |
---|---|
author | Christensen, Niels Johan Demharter, Samuel Machado, Meera Pedersen, Lykke Salvatore, Marco Stentoft-Hansen, Valdemar Iglesias, Miquel Triana |
author_facet | Christensen, Niels Johan Demharter, Samuel Machado, Meera Pedersen, Lykke Salvatore, Marco Stentoft-Hansen, Valdemar Iglesias, Miquel Triana |
author_sort | Christensen, Niels Johan |
collection | PubMed |
description | MOTIVATION: The identification of predictive biomarker signatures from omics and multi-omics data for clinical applications is an active area of research. Recent developments in assay technologies and machine learning (ML) methods have led to significant improvements in predictive performance. However, most high-performing ML methods suffer from complex architectures and lack interpretability. RESULTS: We present the application of a novel symbolic-regression-based algorithm, the QLattice, on a selection of clinical omics datasets. This approach generates parsimonious high-performing models that can both predict disease outcomes and reveal putative disease mechanisms, demonstrating the importance of selecting maximally relevant and minimally redundant features in omics-based machine-learning applications. The simplicity and high-predictive power of these biomarker signatures make them attractive tools for high-stakes applications in areas such as primary care, clinical decision-making and patient stratification. AVAILABILITY AND IMPLEMENTATION: The QLattice is available as part of a python package (feyn), which is available at the Python Package Index (https://pypi.org/project/feyn/) and can be installed via pip. The documentation provides guides, tutorials and the API reference (https://docs.abzu.ai/). All code and data used to generate the models and plots discussed in this work can be found in https://github.com/abzu-ai/QLattice-clinical-omics. SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-9344843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-93448432022-08-03 Identifying interactions in omics data for clinical biomarker discovery using symbolic regression Christensen, Niels Johan Demharter, Samuel Machado, Meera Pedersen, Lykke Salvatore, Marco Stentoft-Hansen, Valdemar Iglesias, Miquel Triana Bioinformatics Original Papers MOTIVATION: The identification of predictive biomarker signatures from omics and multi-omics data for clinical applications is an active area of research. Recent developments in assay technologies and machine learning (ML) methods have led to significant improvements in predictive performance. However, most high-performing ML methods suffer from complex architectures and lack interpretability. RESULTS: We present the application of a novel symbolic-regression-based algorithm, the QLattice, on a selection of clinical omics datasets. This approach generates parsimonious high-performing models that can both predict disease outcomes and reveal putative disease mechanisms, demonstrating the importance of selecting maximally relevant and minimally redundant features in omics-based machine-learning applications. The simplicity and high-predictive power of these biomarker signatures make them attractive tools for high-stakes applications in areas such as primary care, clinical decision-making and patient stratification. AVAILABILITY AND IMPLEMENTATION: The QLattice is available as part of a python package (feyn), which is available at the Python Package Index (https://pypi.org/project/feyn/) and can be installed via pip. The documentation provides guides, tutorials and the API reference (https://docs.abzu.ai/). All code and data used to generate the models and plots discussed in this work can be found in https://github.com/abzu-ai/QLattice-clinical-omics. SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online. Oxford University Press 2022-06-22 /pmc/articles/PMC9344843/ /pubmed/35731214 http://dx.doi.org/10.1093/bioinformatics/btac405 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Christensen, Niels Johan Demharter, Samuel Machado, Meera Pedersen, Lykke Salvatore, Marco Stentoft-Hansen, Valdemar Iglesias, Miquel Triana Identifying interactions in omics data for clinical biomarker discovery using symbolic regression |
title | Identifying interactions in omics data for clinical biomarker discovery using symbolic regression |
title_full | Identifying interactions in omics data for clinical biomarker discovery using symbolic regression |
title_fullStr | Identifying interactions in omics data for clinical biomarker discovery using symbolic regression |
title_full_unstemmed | Identifying interactions in omics data for clinical biomarker discovery using symbolic regression |
title_short | Identifying interactions in omics data for clinical biomarker discovery using symbolic regression |
title_sort | identifying interactions in omics data for clinical biomarker discovery using symbolic regression |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344843/ https://www.ncbi.nlm.nih.gov/pubmed/35731214 http://dx.doi.org/10.1093/bioinformatics/btac405 |
work_keys_str_mv | AT christensennielsjohan identifyinginteractionsinomicsdataforclinicalbiomarkerdiscoveryusingsymbolicregression AT demhartersamuel identifyinginteractionsinomicsdataforclinicalbiomarkerdiscoveryusingsymbolicregression AT machadomeera identifyinginteractionsinomicsdataforclinicalbiomarkerdiscoveryusingsymbolicregression AT pedersenlykke identifyinginteractionsinomicsdataforclinicalbiomarkerdiscoveryusingsymbolicregression AT salvatoremarco identifyinginteractionsinomicsdataforclinicalbiomarkerdiscoveryusingsymbolicregression AT stentofthansenvaldemar identifyinginteractionsinomicsdataforclinicalbiomarkerdiscoveryusingsymbolicregression AT iglesiasmiqueltriana identifyinginteractionsinomicsdataforclinicalbiomarkerdiscoveryusingsymbolicregression |