Cargando…
A Novel Deep Learning Model to Distinguish Malignant Versus Benign Solid Lung Nodules
BACKGROUND: In this study we aimed to establish a new transfer learning model based on noncontrast and thin-layer computed tomography (CT) scans to distinguish between malignant and benign solid lung nodules. MATERIAL/METHODS: CT images from 202 patients with 210 lesions (malignant: 127, benign: 83)...
Autores principales: | Wang, Shuwen, Zhou, Leilei, Li, Xiaoran, Tang, Jie, Wu, Jing, Yin, Xindao, Chen, Yu-Chen, Lu, Lingquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344882/ https://www.ncbi.nlm.nih.gov/pubmed/35903037 http://dx.doi.org/10.12659/MSM.936830 |
Ejemplares similares
-
Elastography in Distinguishing Benign from Malignant Thyroid Nodules
por: Colakoglu, Bulent, et al.
Publicado: (2016) -
Liquid biopsies to distinguish malignant from benign pulmonary nodules
por: Tao, Rui, et al.
Publicado: (2021) -
Prognostic Factors for Survival in Patients with Malignant Giant Cell Tumor of Bone: A Risk Nomogram Analysis Based on the Population
por: Zhu, Xiaolong, et al.
Publicado: (2021) -
Bioinformatic Profiling of Prognosis-Related Genes in Malignant Glioma Microenvironment
por: Li, Yong, et al.
Publicado: (2020) -
Risk of second primary malignancy in adults with pulmonary high-grade neuroendocrine carcinoma (HGNEC)
por: Wu, Xiaomin, et al.
Publicado: (2020)