Cargando…
Quantization Framework for Fast Spiking Neural Networks
Compared with artificial neural networks (ANNs), spiking neural networks (SNNs) offer additional temporal dynamics with the compromise of lower information transmission rates through the use of spikes. When using an ANN-to-SNN conversion technique there is a direct link between the activation bit pr...
Autores principales: | Li, Chen, Ma, Lei, Furber, Steve |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344889/ https://www.ncbi.nlm.nih.gov/pubmed/35928011 http://dx.doi.org/10.3389/fnins.2022.918793 |
Ejemplares similares
-
Trainable quantization for Speedy Spiking Neural Networks
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
Comparison of Artificial and Spiking Neural Networks on Digital Hardware
por: Davidson, Simon, et al.
Publicado: (2021) -
Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems
por: Fonseca Guerra, Gabriel A., et al.
Publicado: (2017) -
A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine
por: Sen-Bhattacharya, Basabdatta, et al.
Publicado: (2017) -
A Spiking Neural Network Framework for Robust Sound Classification
por: Wu, Jibin, et al.
Publicado: (2018)