Cargando…
Machine Learning Prediction of Hypoglycemia and Hyperglycemia From Electronic Health Records: Algorithm Development and Validation
BACKGROUND: Acute blood glucose (BG) decompensations (hypoglycemia and hyperglycemia) represent a frequent and significant risk for inpatients and adversely affect patient outcomes and safety. The increasing need for BG management in inpatients poses a high demand on clinical staff and health care s...
Autores principales: | Witte, Harald, Nakas, Christos, Bally, Lia, Leichtle, Alexander Benedikt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345028/ https://www.ncbi.nlm.nih.gov/pubmed/35526139 http://dx.doi.org/10.2196/36176 |
Ejemplares similares
-
Big Data in Laboratory Medicine—FAIR Quality for AI?
por: Blatter, Tobias Ueli, et al.
Publicado: (2022) -
Predicting Risk of Hypoglycemia in Patients With Type 2 Diabetes by Electronic Health Record–Based Machine Learning: Development and Validation
por: Yang, Hao, et al.
Publicado: (2022) -
Volumetric Food Quantification Using Computer Vision on a Depth-Sensing Smartphone: Preclinical Study
por: Herzig, David, et al.
Publicado: (2020) -
Computed exercise plasma lactate concentrations: A conversion formula
por: Bally, Lia, et al.
Publicado: (2015) -
Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record
por: Jamian, Lia, et al.
Publicado: (2019)