Cargando…

Spatio-temporal variation of Covid-19 health outcomes in India using deep learning based models

Deep learning methods have become the state of the art for spatio-temporal predictive analysis in a wide range of fields, including environmental management, public health, urban planning, pollution monitoring, and so on. Despite the fact that a variety of powerful deep learning-based models can add...

Descripción completa

Detalles Bibliográficos
Autores principales: Middya, Asif Iqbal, Roy, Sarbani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345394/
https://www.ncbi.nlm.nih.gov/pubmed/35938066
http://dx.doi.org/10.1016/j.techfore.2022.121911
Descripción
Sumario:Deep learning methods have become the state of the art for spatio-temporal predictive analysis in a wide range of fields, including environmental management, public health, urban planning, pollution monitoring, and so on. Despite the fact that a variety of powerful deep learning-based models can address various problem-specific issues in different research domain, it has been found that no single optimal model can outperform everywhere. Now, in the last two years, various deep learning-based studies have provided a variety of best-performing techniques for predicting COVID-19 health outcomes. In this context, this study attempts to perform a case study that investigates the spatio-temporal variation in the performance of deep-learning-based methods for predicting COVID-19 health outcomes in India. Various widely applied deep learning models namely CNN (convolutional neural network), RNN (recurrent neural network), Vanilla LSTM (long short-term memory), LSTM Autoencoder, and Bidirectional LSTM are considered to investigate their spatio-temporal performance variation. The effectiveness of the models is assessed using various metrics based on COVID-19 mortality time-series from 36 states and union territories of India.