Cargando…
Asymmetric and adaptive reward coding via normalized reinforcement learning
Learning is widely modeled in psychology, neuroscience, and computer science by prediction error-guided reinforcement learning (RL) algorithms. While standard RL assumes linear reward functions, reward-related neural activity is a saturating, nonlinear function of reward; however, the computational...
Autor principal: | Louie, Kenway |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345478/ https://www.ncbi.nlm.nih.gov/pubmed/35862443 http://dx.doi.org/10.1371/journal.pcbi.1010350 |
Ejemplares similares
-
Multiple timescales of normalized value coding underlie adaptive choice behavior
por: Zimmermann, Jan, et al.
Publicado: (2018) -
Asymmetric Airfoil Morphing via Deep Reinforcement Learning
por: Lu, Kelin, et al.
Publicado: (2022) -
Reward boosts reinforcement-based motor learning
por: Vassiliadis, Pierre, et al.
Publicado: (2021) -
Reward-predictive representations generalize across tasks in reinforcement learning
por: Lehnert, Lucas, et al.
Publicado: (2020) -
Intrinsic rewards explain context-sensitive valuation in reinforcement learning
por: Molinaro, Gaia, et al.
Publicado: (2023)