Cargando…
Tunneling gravimetry
We examine the prospects of utilizing matter-wave Fabry–Pérot interferometers for enhanced inertial sensing applications. Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations: (a) a transmission setup, where the initial wave packet is transmitted...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345841/ https://www.ncbi.nlm.nih.gov/pubmed/35939269 http://dx.doi.org/10.1140/epjqt/s40507-022-00140-3 |
Sumario: | We examine the prospects of utilizing matter-wave Fabry–Pérot interferometers for enhanced inertial sensing applications. Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations: (a) a transmission setup, where the initial wave packet is transmitted through the cavity and (b) an out-tunneling scheme with intra-cavity generated initial states lacking a classical counterpart. We perform numerical simulations of the complete dynamics of the quantum wave packet, investigate the tunneling through a matter-wave cavity formed by realistic optical potentials and determine the impact of interactions between atoms. As a consequence we estimate the prospective sensitivities to inertial forces for both proposed configurations and show their feasibility for serving as inertial sensors. |
---|