Cargando…
MLCA2F: Multi-Level Context Attentional Feature Fusion for COVID-19 lesion segmentation from CT scans
In the field of diagnosis and treatment planning of Coronavirus disease 2019 (COVID-19), accurate infected area segmentation is challenging due to the significant variations in the COVID-19 lesion size, shape, and position, boundary ambiguity, as well as complex structure. To bridge these gaps, this...
Autores principales: | Bakkouri, Ibtissam, Afdel, Karim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346062/ https://www.ncbi.nlm.nih.gov/pubmed/35935538 http://dx.doi.org/10.1007/s11760-022-02325-w |
Ejemplares similares
-
DermoNet: A Computer-Aided Diagnosis System for Dermoscopic Disease Recognition
por: Bakkouri, Ibtissam, et al.
Publicado: (2020) -
MLCA—A Machine Learning Framework for INS Coarse Alignment
por: Zak, Idan, et al.
Publicado: (2020) -
Attention-based dual-path feature fusion network for automatic skin lesion segmentation
por: He, Zhenxiang, et al.
Publicado: (2023) -
PCF-Net: Position and context information fusion attention convolutional neural network for skin lesion segmentation
por: Jiang, Yun, et al.
Publicado: (2023) -
CFANet: Context Feature Fusion and Attention Mechanism Based Network for Small Target Segmentation in Medical Images
por: Cao, Ruifen, et al.
Publicado: (2023)