Cargando…
Comparative Study of Repertoire Classification Methods Reveals Data Efficiency of k -mer Feature Extraction
The repertoire of T cell receptors encodes various types of immunological information. Machine learning is indispensable for decoding such information from repertoire datasets measured by next-generation sequencing (NGS). In particular, the classification of repertoires is the most basic task, which...
Autores principales: | Katayama, Yotaro, Kobayashi, Tetsuya J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346074/ https://www.ncbi.nlm.nih.gov/pubmed/35936014 http://dx.doi.org/10.3389/fimmu.2022.797640 |
Ejemplares similares
-
Machine Learning Approaches to TCR Repertoire Analysis
por: Katayama, Yotaro, et al.
Publicado: (2022) -
Comparing K-mer based methods for improved classification of 16S sequences
por: Vinje, Hilde, et al.
Publicado: (2015) -
Accurate and Efficient KIR Gene and Haplotype Inference From Genome Sequencing Reads With Novel K-mer Signatures
por: Roe, David, et al.
Publicado: (2020) -
Quantification of Inter-Sample Differences in T-Cell Receptor Repertoires Using Sequence-Based Information
por: Yokota, Ryo, et al.
Publicado: (2017) -
Exploration of shared features of B cell receptor and T cell receptor repertoires reveals distinct clonotype clusters
por: Hong, Sang Bin, et al.
Publicado: (2022)