Cargando…
A novel deep fusion strategy for COVID-19 prediction using multimodality approach()
Over the last two years, the novel coronavirus has become a significant threat to the health of the public, and numerous approaches are developed to determine the symptoms of COVID-19. To deal with the complex symptoms of COVID-19, a Deep Learning-assisted Multi-modal Data Analysis (DMDA) approach i...
Autores principales: | Manocha, Ankush, Bhatia, Munish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346103/ https://www.ncbi.nlm.nih.gov/pubmed/35938050 http://dx.doi.org/10.1016/j.compeleceng.2022.108274 |
Ejemplares similares
-
Artificial intelligence-inspired comprehensive framework for Covid-19 outbreak control
por: Bhatia, Munish, et al.
Publicado: (2022) -
Deep Multimodal Fusion Autoencoder for Saliency Prediction of RGB-D Images
por: Huang, Kengda, et al.
Publicado: (2021) -
Usefulness of the Multimodal Fusion Image for Visualization of Deep Sylvian Veins
por: NAKASE, Kenta, et al.
Publicado: (2022) -
A Novel Approach for Drug-Target Interactions Prediction Based on Multimodal Deep Autoencoder
por: Wang, Huiqing, et al.
Publicado: (2020) -
Perceived Mental Workload Classification Using Intermediate Fusion Multimodal Deep Learning
por: Dolmans, Tenzing C., et al.
Publicado: (2021)