Cargando…

Pitcher geometry facilitates extrinsically powered ‘springboard trapping' in carnivorous Nepenthes gracilis pitcher plants

Carnivorous pitcher plants capture insects in cup-shaped leaves that function as motionless pitfall traps. Nepenthes gracilis evolved a unique ‘springboard' trapping mechanism that exploits the impact energy of falling raindrops to actuate a fast pivoting motion of the canopy-like pitcher lid....

Descripción completa

Detalles Bibliográficos
Autores principales: Lenz, Anne-Kristin, Bauer, Ulrike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346345/
https://www.ncbi.nlm.nih.gov/pubmed/35920027
http://dx.doi.org/10.1098/rsbl.2022.0106
Descripción
Sumario:Carnivorous pitcher plants capture insects in cup-shaped leaves that function as motionless pitfall traps. Nepenthes gracilis evolved a unique ‘springboard' trapping mechanism that exploits the impact energy of falling raindrops to actuate a fast pivoting motion of the canopy-like pitcher lid. We superimposed multiple computed micro-tomography images of the same pitcher to reveal distinct deformation patterns in lid-trapping N. gracilis and closely related pitfall-trapping N. rafflesiana. We found prominent differences between downward and upward lid displacement in N. gracilis only. Downward displacement was characterized by bending in two distinct deformation zones whist upward displacement was accomplished by evenly distributed straightening of the entire upper rear section of the pitcher. This suggests an anisotropic impact response, which may help to maximize initial jerk forces for prey capture, as well as the subsequent damping of the oscillation. Our results point to a key role of pitcher geometry for effective ‘springboard' trapping in N. gracilis.