Cargando…
Causal machine learning for healthcare and precision medicine
Causal machine learning (CML) has experienced increasing popularity in healthcare. Beyond the inherent capabilities of adding domain knowledge into learning systems, CML provides a complete toolset for investigating how a system would react to an intervention (e.g. outcome given a treatment). Quanti...
Autores principales: | Sanchez, Pedro, Voisey, Jeremy P., Xia, Tian, Watson, Hannah I., O’Neil, Alison Q., Tsaftaris, Sotirios A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346354/ https://www.ncbi.nlm.nih.gov/pubmed/35950198 http://dx.doi.org/10.1098/rsos.220638 |
Ejemplares similares
-
Targeting resources efficiently and justifiably by combining causal machine learning and theory
por: Gur Ali, Ozden
Publicado: (2022) -
Editorial: Artificial Intelligence for Precision Medicine
por: Deng, Jun, et al.
Publicado: (2022) -
Using machine learning for healthcare treatment planning
por: Dubey, Snigdha, et al.
Publicado: (2023) -
Automatic emotion recognition in healthcare data using supervised machine learning
por: Azam, Nazish, et al.
Publicado: (2021) -
Causal graph extraction from news: a comparative study of time-series causality learning techniques
por: Maisonnave, Mariano, et al.
Publicado: (2022)