Cargando…
Weak self-supervised learning for seizure forecasting: a feasibility study
This paper proposes an artificial intelligence system that continuously improves over time at event prediction using initially unlabelled data by using self-supervised learning. Time-series data are inherently autocorrelated. By using a detection model to generate weak labels on the fly, which are c...
Autores principales: | Yang, Yikai, Truong, Nhan Duy, Eshraghian, Jason K., Nikpour, Armin, Kavehei, Omid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346358/ https://www.ncbi.nlm.nih.gov/pubmed/35950196 http://dx.doi.org/10.1098/rsos.220374 |
Ejemplares similares
-
Seizure detection with reduced electroencephalogram channels: research trends and outlook
por: Maher, Christina, et al.
Publicado: (2023) -
Seizure Susceptibility Prediction in Uncontrolled Epilepsy
por: Truong, Nhan Duy, et al.
Publicado: (2021) -
White matter alterations in focal to bilateral tonic-clonic seizures
por: Maher, Christina, et al.
Publicado: (2022) -
Deep learning distinguishes connectomes from focal epilepsy patients and controls: feasibility and clinical implications
por: Maher, Christina, et al.
Publicado: (2023) -
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Saab, Khaled, et al.
Publicado: (2020)