Cargando…
Extraction of Explicit and Implicit Cause-Effect Relationships in Patient-Reported Diabetes-Related Tweets From 2017 to 2021: Deep Learning Approach
BACKGROUND: Intervening in and preventing diabetes distress requires an understanding of its causes and, in particular, from a patient’s perspective. Social media data provide direct access to how patients see and understand their disease and consequently show the causes of diabetes distress. OBJECT...
Autores principales: | Ahne, Adrian, Khetan, Vivek, Tannier, Xavier, Rizvi, Md Imbesat Hassan, Czernichow, Thomas, Orchard, Francisco, Bour, Charline, Fano, Andrew, Fagherazzi, Guy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346561/ https://www.ncbi.nlm.nih.gov/pubmed/35852829 http://dx.doi.org/10.2196/37201 |
Ejemplares similares
-
Insulin pricing and other major diabetes-related concerns in the USA: a study of 46 407 tweets between 2017 and 2019
por: Ahne, Adrian, et al.
Publicado: (2020) -
Improving Diabetes-Related Biomedical Literature Exploration in the Clinical Decision-making Process via Interactive Classification and Topic Discovery: Methodology Development Study
por: Ahne, Adrian, et al.
Publicado: (2022) -
The Use of Social Media for Health Research Purposes: Scoping Review
por: Bour, Charline, et al.
Publicado: (2021) -
Scoping review protocol on the use of social media for health research purposes
por: Bour, Charline, et al.
Publicado: (2021) -
Global diabetes burden: analysis of regional differences to improve diabetes care
por: Bour, Charline, et al.
Publicado: (2022)