Cargando…
Development of a deep learning model for automatic localization of radiographic markers of proposed dental implant site locations
OBJECTIVES: To develop a Deep Learning Artificial Intelligence (AI) model that automatically localizes the position of radiographic stent gutta percha (GP) markers in cone beam computed tomography (CBCT) images to identify proposed implant sites within the images, and to test the performance of the...
Autores principales: | Alsomali, Mona, Alghamdi, Shatha, Alotaibi, Shahad, Alfadda, Sara, Altwaijry, Najwa, Alturaiki, Isra, Al-Ekrish, Asma'a |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346930/ https://www.ncbi.nlm.nih.gov/pubmed/35935725 http://dx.doi.org/10.1016/j.sdentj.2022.01.002 |
Ejemplares similares
-
Ultralow Dose MSCT Imaging in Dental Implantology
por: Widmann, Gerlig, et al.
Publicado: (2018) -
A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection
por: Al-Turaiki, Isra, et al.
Publicado: (2021) -
Comparative study of the accuracy of CBCT implant site measurements using different software programs
por: Al-Ekrish, Asma'a A.
Publicado: (2021) -
Molecular Identification of Trypanosoma evansi Isolated from Arabian Camels (Camelus dromedarius) in Riyadh and Al-Qassim, Saudi Arabia
por: Metwally, Dina M., et al.
Publicado: (2021) -
Automatic Feature Segmentation in Dental Periapical Radiographs
por: Ari, Tugba, et al.
Publicado: (2022)