Cargando…
Extraction of entity relations from Chinese medical literature based on multi-scale CRNN
BACKGROUND: Entity relation extraction technology can be used to extract entities and relations from medical literature, and automatically establish professional mapping knowledge domains. The classical text classification model, convolutional neural networks for sentence classification (TEXTCNN), h...
Autores principales: | Chen, Tingyin, Wu, Xuehong, Li, Linyi, Li, Jianhua, Feng, Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347033/ https://www.ncbi.nlm.nih.gov/pubmed/35928762 http://dx.doi.org/10.21037/atm-22-1226 |
Ejemplares similares
-
Text Recognition Model Based on Multi-Scale Fusion CRNN
por: Zou, Le, et al.
Publicado: (2023) -
Entity relation extraction in the medical domain: based on data augmentation
por: Wang, Anli, et al.
Publicado: (2022) -
Pill Box Text Identification Using DBNet-CRNN
por: Xiang, Liuqing, et al.
Publicado: (2023) -
Entity relation extraction from electronic medical records based on improved annotation rules and BiLSTM-CRF
por: Chen, Tingyin, et al.
Publicado: (2021) -
A-CRNN-Based Method for Coherent DOA Estimation with Unknown Source Number
por: Yao, Yuanyuan, et al.
Publicado: (2020)