Cargando…
Multi-scaled self-attention for drug–target interaction prediction based on multi-granularity representation
BACKGROUND: Drug–target interaction (DTI) prediction plays a crucial role in drug discovery. Although the advanced deep learning has shown promising results in predicting DTIs, it still needs improvements in two aspects: (1) encoding method, in which the existing encoding method, character encoding,...
Autores principales: | Zeng, Yuni, Chen, Xiangru, Peng, Dezhong, Zhang, Lijun, Huang, Haixiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347097/ https://www.ncbi.nlm.nih.gov/pubmed/35922768 http://dx.doi.org/10.1186/s12859-022-04857-x |
Ejemplares similares
-
Information Extraction Network Based on Multi-Granularity Attention and Multi-Scale Self-Learning
por: Sun, Weiwei, et al.
Publicado: (2023) -
Multi-granularity Complex Network Representation Learning
por: Li, Peisen, et al.
Publicado: (2020) -
MTMG: A multi-task model with multi-granularity information for drug-drug interaction extraction
por: Deng, Haohan, et al.
Publicado: (2023) -
SSD with multi-scale feature fusion and attention mechanism
por: Liu, Qiang, et al.
Publicado: (2023) -
Multi-view feature representation and fusion for drug-drug interactions prediction
por: Wang, Jing, et al.
Publicado: (2023)