Cargando…

Early detection of COVID-19 outbreaks using textual analysis of electronic medical records

PURPOSE: Our objective was to develop a tool promoting early detection of COVID-19 cases by focusing epidemiological investigations and PCR examinations during a period of limited testing capabilities. METHODS: We developed an algorithm for analyzing medical records recorded by healthcare providers...

Descripción completa

Detalles Bibliográficos
Autores principales: Shapiro, Michael, Landau, Regev, Shay, Shahaf, Kaminsky, Marina, Verhovsky, Guy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347140/
https://www.ncbi.nlm.nih.gov/pubmed/35973330
http://dx.doi.org/10.1016/j.jcv.2022.105251
Descripción
Sumario:PURPOSE: Our objective was to develop a tool promoting early detection of COVID-19 cases by focusing epidemiological investigations and PCR examinations during a period of limited testing capabilities. METHODS: We developed an algorithm for analyzing medical records recorded by healthcare providers in the Israeli Defense Forces. The algorithm utilized textual analysis to detect patients presenting with suspicious symptoms and was tested among 92 randomly selected units. Detection of a potential cluster of patients in a unit prompted a focused epidemiological investigation aided by data provided by the algorithm. RESULTS: During a month of follow up, the algorithm has flagged 17 of the units for investigation. The subsequent epidemiological investigations led to the testing of 78 persons and the detection of eight cases in four clusters that were previously gone unnoticed. The resulting positive test rate of 10.25% was five time higher than the IDF average at the time of the study. No cases of COVID-19 in the examined units were missed by the algorithm. CONCLUSIONS: This study depicts the successful development and large scale deployment of a textual analysis based algorithm for early detection of COVID-19 cases, demonstrating the potential of natural language processing of medical text as a tool for promoting public health.