Cargando…
Grayscale image statistics of COVID‐19 patient CT scans characterize lung condition with machine and deep learning
BACKGROUND: Grayscale image attributes of computed tomography (CT) of pulmonary scans contain valuable information relating to patients with respiratory ailments. These attributes are used to evaluate the severity of lung conditions of patients confirmed to be with and without COVID‐19. METHOD: Five...
Autores principales: | Ghashghaei, Sara, Wood, David A., Sadatshojaei, Erfan, Jalilpoor, Mansooreh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347876/ https://www.ncbi.nlm.nih.gov/pubmed/35942198 http://dx.doi.org/10.1002/cdt3.27 |
Ejemplares similares
-
Grayscale Image Statistical Attributes Effectively Distinguish the Severity of Lung Abnormalities in CT Scan Slices of COVID-19 Patients
por: Ghashghaei, Sara, et al.
Publicado: (2023) -
Colorizing Grayscale CT images of human lungs using deep learning methods
por: Wang, Yuewei, et al.
Publicado: (2022) -
Colorectal Polyp Image Detection and Classification through Grayscale Images and Deep Learning
por: Hsu, Chen-Ming, et al.
Publicado: (2021) -
Systematic optimization of ultrasound grayscale imaging presets and its application in abdominal scanning
por: Long, Zaiyang, et al.
Publicado: (2020) -
Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures
por: Tesileanu, Tiberiu, et al.
Publicado: (2020)