Cargando…
Highly Efficient Proton Conduction in the Metal–Organic Framework Material MFM-300(Cr)·SO(4)(H(3)O)(2)
[Image: see text] The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348827/ https://www.ncbi.nlm.nih.gov/pubmed/35775201 http://dx.doi.org/10.1021/jacs.2c04900 |
_version_ | 1784761998470283264 |
---|---|
author | Chen, Jin Mei, Qingqing Chen, Yinlin Marsh, Christopher An, Bing Han, Xue Silverwood, Ian P. Li, Ming Cheng, Yongqiang He, Meng Chen, Xi Li, Weiyao Kippax-Jones, Meredydd Crawshaw, Danielle Frogley, Mark D. Day, Sarah J. García-Sakai, Victoria Manuel, Pascal Ramirez-Cuesta, Anibal J. Yang, Sihai Schröder, Martin |
author_facet | Chen, Jin Mei, Qingqing Chen, Yinlin Marsh, Christopher An, Bing Han, Xue Silverwood, Ian P. Li, Ming Cheng, Yongqiang He, Meng Chen, Xi Li, Weiyao Kippax-Jones, Meredydd Crawshaw, Danielle Frogley, Mark D. Day, Sarah J. García-Sakai, Victoria Manuel, Pascal Ramirez-Cuesta, Anibal J. Yang, Sihai Schröder, Martin |
author_sort | Chen, Jin |
collection | PubMed |
description | [Image: see text] The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO(4)(H(3)O)(2), which exhibits a record-low activation energy of 0.04 eV, resulting in stable proton conductivity between 25 and 80 °C of >10(–2) S cm(–1). In situ synchrotron X-ray powder diffraction (SXPD), neutron powder diffraction (NPD), quasielastic neutron scattering (QENS), and molecular dynamics (MD) simulation reveal the pathways of proton transport and the molecular mechanism of proton diffusion within the pores. Confined sulfuric acid species together with adsorbed water molecules play a critical role in promoting the proton transfer through this robust network to afford a material in which proton conductivity is almost temperature-independent. |
format | Online Article Text |
id | pubmed-9348827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-93488272022-08-04 Highly Efficient Proton Conduction in the Metal–Organic Framework Material MFM-300(Cr)·SO(4)(H(3)O)(2) Chen, Jin Mei, Qingqing Chen, Yinlin Marsh, Christopher An, Bing Han, Xue Silverwood, Ian P. Li, Ming Cheng, Yongqiang He, Meng Chen, Xi Li, Weiyao Kippax-Jones, Meredydd Crawshaw, Danielle Frogley, Mark D. Day, Sarah J. García-Sakai, Victoria Manuel, Pascal Ramirez-Cuesta, Anibal J. Yang, Sihai Schröder, Martin J Am Chem Soc [Image: see text] The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO(4)(H(3)O)(2), which exhibits a record-low activation energy of 0.04 eV, resulting in stable proton conductivity between 25 and 80 °C of >10(–2) S cm(–1). In situ synchrotron X-ray powder diffraction (SXPD), neutron powder diffraction (NPD), quasielastic neutron scattering (QENS), and molecular dynamics (MD) simulation reveal the pathways of proton transport and the molecular mechanism of proton diffusion within the pores. Confined sulfuric acid species together with adsorbed water molecules play a critical role in promoting the proton transfer through this robust network to afford a material in which proton conductivity is almost temperature-independent. American Chemical Society 2022-07-01 2022-07-13 /pmc/articles/PMC9348827/ /pubmed/35775201 http://dx.doi.org/10.1021/jacs.2c04900 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Chen, Jin Mei, Qingqing Chen, Yinlin Marsh, Christopher An, Bing Han, Xue Silverwood, Ian P. Li, Ming Cheng, Yongqiang He, Meng Chen, Xi Li, Weiyao Kippax-Jones, Meredydd Crawshaw, Danielle Frogley, Mark D. Day, Sarah J. García-Sakai, Victoria Manuel, Pascal Ramirez-Cuesta, Anibal J. Yang, Sihai Schröder, Martin Highly Efficient Proton Conduction in the Metal–Organic Framework Material MFM-300(Cr)·SO(4)(H(3)O)(2) |
title | Highly
Efficient Proton Conduction in the Metal–Organic
Framework Material MFM-300(Cr)·SO(4)(H(3)O)(2) |
title_full | Highly
Efficient Proton Conduction in the Metal–Organic
Framework Material MFM-300(Cr)·SO(4)(H(3)O)(2) |
title_fullStr | Highly
Efficient Proton Conduction in the Metal–Organic
Framework Material MFM-300(Cr)·SO(4)(H(3)O)(2) |
title_full_unstemmed | Highly
Efficient Proton Conduction in the Metal–Organic
Framework Material MFM-300(Cr)·SO(4)(H(3)O)(2) |
title_short | Highly
Efficient Proton Conduction in the Metal–Organic
Framework Material MFM-300(Cr)·SO(4)(H(3)O)(2) |
title_sort | highly
efficient proton conduction in the metal–organic
framework material mfm-300(cr)·so(4)(h(3)o)(2) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348827/ https://www.ncbi.nlm.nih.gov/pubmed/35775201 http://dx.doi.org/10.1021/jacs.2c04900 |
work_keys_str_mv | AT chenjin highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT meiqingqing highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT chenyinlin highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT marshchristopher highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT anbing highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT hanxue highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT silverwoodianp highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT liming highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT chengyongqiang highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT hemeng highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT chenxi highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT liweiyao highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT kippaxjonesmeredydd highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT crawshawdanielle highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT frogleymarkd highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT daysarahj highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT garciasakaivictoria highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT manuelpascal highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT ramirezcuestaanibalj highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT yangsihai highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 AT schrodermartin highlyefficientprotonconductioninthemetalorganicframeworkmaterialmfm300crso4h3o2 |