Cargando…

One-Metal/Two-Ligand for Dual Activation Tandem Catalysis: Photoinduced Cu-Catalyzed Anti-hydroboration of Alkynes

[Image: see text] A dual catalyst system based on ligand exchange of two diphosphine ligands possessing different properties in a copper complex has been devised to merge metal- and photocatalytic activation modes. This strategy has been applied to the formal anti-hydroboration of activated internal...

Descripción completa

Detalles Bibliográficos
Autores principales: Corpas, Javier, Gomez-Mendoza, Miguel, Ramírez-Cárdenas, Jonathan, de la Peña O’Shea, Víctor A., Mauleón, Pablo, Gómez Arrayás, Ramón, Carretero, Juan C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348838/
https://www.ncbi.nlm.nih.gov/pubmed/35786909
http://dx.doi.org/10.1021/jacs.2c05805
Descripción
Sumario:[Image: see text] A dual catalyst system based on ligand exchange of two diphosphine ligands possessing different properties in a copper complex has been devised to merge metal- and photocatalytic activation modes. This strategy has been applied to the formal anti-hydroboration of activated internal alkynes via a tandem sequence in which Cu/Xantphos catalyzes the B(2)pin(2)-syn-hydroboration of the alkyne whereas Cu/BINAP serves as a photocatalyst for visible light-mediated isomerization of the resulting alkenyl boronic ester. Photochemical studies by means of UV–vis absorption, steady-state and time-resolved fluorescence, and transient absorption spectroscopy have allowed characterizing the photoactive Cu/BINAP species in the isomerization reaction and its interaction with the intermediate syn-alkenyl boronic ester through energy transfer from the triplet excited state of the copper catalyst. In addition, mechanistic studies shed light into catalyst speciation and the interplay between the two catalytic cycles as critical success factors.