Cargando…
A semi-supervised deep-learning approach for automatic crystal structure classification
The structural solution problem can be a daunting and time-consuming task. Especially in the presence of impurity phases, current methods, such as indexing, become more unstable. In this work, the novel approach of semi-supervised learning is applied towards the problem of identifying the Bravais la...
Autores principales: | Lolla, Satvik, Liang, Haotong, Kusne, A. Gilad, Takeuchi, Ichiro, Ratcliff, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348870/ https://www.ncbi.nlm.nih.gov/pubmed/35974721 http://dx.doi.org/10.1107/S1600576722006069 |
Ejemplares similares
-
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
Developing Sustainable Classification of Diseases via Deep Learning and Semi-Supervised Learning
por: Yin, Chunwu, et al.
Publicado: (2020) -
Improving Colonoscopy Lesion Classification Using Semi-Supervised Deep Learning
por: GOLHAR, MAYANK, et al.
Publicado: (2020) -
A Semi-supervised Deep Learning Method for Cervical Cell Classification
por: Zhao, Siqi, et al.
Publicado: (2022) -
A fully-automatic semi-supervised deep learning model for difficult airway assessment
por: Wang, Guangzhi, et al.
Publicado: (2023)