Cargando…

Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks

Machine learning methods are used for an automated classification of experimental two-time X-ray photon correlation maps from an arrested liquid–liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn–Hilliard-type simulations of liqu...

Descripción completa

Detalles Bibliográficos
Autores principales: Timmermann, Sonja, Starostin, Vladimir, Girelli, Anita, Ragulskaya, Anastasia, Rahmann, Hendrik, Reiser, Mario, Begam, Nafisa, Randolph, Lisa, Sprung, Michael, Westermeier, Fabian, Zhang, Fajun, Schreiber, Frank, Gutt, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348880/
https://www.ncbi.nlm.nih.gov/pubmed/35974741
http://dx.doi.org/10.1107/S1600576722004435
_version_ 1784762009492914176
author Timmermann, Sonja
Starostin, Vladimir
Girelli, Anita
Ragulskaya, Anastasia
Rahmann, Hendrik
Reiser, Mario
Begam, Nafisa
Randolph, Lisa
Sprung, Michael
Westermeier, Fabian
Zhang, Fajun
Schreiber, Frank
Gutt, Christian
author_facet Timmermann, Sonja
Starostin, Vladimir
Girelli, Anita
Ragulskaya, Anastasia
Rahmann, Hendrik
Reiser, Mario
Begam, Nafisa
Randolph, Lisa
Sprung, Michael
Westermeier, Fabian
Zhang, Fajun
Schreiber, Frank
Gutt, Christian
author_sort Timmermann, Sonja
collection PubMed
description Machine learning methods are used for an automated classification of experimental two-time X-ray photon correlation maps from an arrested liquid–liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn–Hilliard-type simulations of liquid–liquid phase separations according to two simulation parameters and in the last step interpreted in the framework of the simulation. The matching routine employs an auto-encoder network and a differential evolution based algorithm. The method presented here is a first step towards handling large amounts of dynamic data measured at high-brilliance synchrotron and X-ray free-electron laser sources, facilitating fast comparison with phase field models of phase separation.
format Online
Article
Text
id pubmed-9348880
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-93488802022-08-15 Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks Timmermann, Sonja Starostin, Vladimir Girelli, Anita Ragulskaya, Anastasia Rahmann, Hendrik Reiser, Mario Begam, Nafisa Randolph, Lisa Sprung, Michael Westermeier, Fabian Zhang, Fajun Schreiber, Frank Gutt, Christian J Appl Crystallogr Research Papers Machine learning methods are used for an automated classification of experimental two-time X-ray photon correlation maps from an arrested liquid–liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn–Hilliard-type simulations of liquid–liquid phase separations according to two simulation parameters and in the last step interpreted in the framework of the simulation. The matching routine employs an auto-encoder network and a differential evolution based algorithm. The method presented here is a first step towards handling large amounts of dynamic data measured at high-brilliance synchrotron and X-ray free-electron laser sources, facilitating fast comparison with phase field models of phase separation. International Union of Crystallography 2022-06-15 /pmc/articles/PMC9348880/ /pubmed/35974741 http://dx.doi.org/10.1107/S1600576722004435 Text en © Sonja Timmermann et al. 2022 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
spellingShingle Research Papers
Timmermann, Sonja
Starostin, Vladimir
Girelli, Anita
Ragulskaya, Anastasia
Rahmann, Hendrik
Reiser, Mario
Begam, Nafisa
Randolph, Lisa
Sprung, Michael
Westermeier, Fabian
Zhang, Fajun
Schreiber, Frank
Gutt, Christian
Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks
title Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks
title_full Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks
title_fullStr Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks
title_full_unstemmed Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks
title_short Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks
title_sort automated matching of two-time x-ray photon correlation maps from phase-separating proteins with cahn–hilliard-type simulations using auto-encoder networks
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348880/
https://www.ncbi.nlm.nih.gov/pubmed/35974741
http://dx.doi.org/10.1107/S1600576722004435
work_keys_str_mv AT timmermannsonja automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT starostinvladimir automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT girellianita automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT ragulskayaanastasia automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT rahmannhendrik automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT reisermario automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT begamnafisa automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT randolphlisa automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT sprungmichael automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT westermeierfabian automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT zhangfajun automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT schreiberfrank automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks
AT guttchristian automatedmatchingoftwotimexrayphotoncorrelationmapsfromphaseseparatingproteinswithcahnhilliardtypesimulationsusingautoencodernetworks