Cargando…
LaueNN: neural-network-based hkl recognition of Laue spots and its application to polycrystalline materials
A feed-forward neural-network-based model is presented to index, in real time, the diffraction spots recorded during synchrotron X-ray Laue microdiffraction experiments. Data dimensionality reduction is applied to extract physical 1D features from the 2D X-ray diffraction Laue images, thereby making...
Autores principales: | Purushottam Raj Purohit, Ravi Raj Purohit, Tardif, Samuel, Castelnau, Olivier, Eymery, Joel, Guinebretière, René, Robach, Odile, Ors, Taylan, Micha, Jean-Sébastien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348891/ https://www.ncbi.nlm.nih.gov/pubmed/35974740 http://dx.doi.org/10.1107/S1600576722004198 |
Ejemplares similares
-
CNN-Based Laue Spot Morphology Predictor for Reliable Crystallographic Descriptor Estimation
por: Kirstein, Tom, et al.
Publicado: (2023) -
In situ bending of an Au nanowire monitored by micro Laue diffraction
por: Leclere, Cédric, et al.
Publicado: (2015) -
Laue-DIC: a new method for improved stress field measurements at the micrometer scale
por: Petit, J., et al.
Publicado: (2015) -
Laue-Langevin Institut Workshop
por: Mezei, Ferenc
Publicado: (1980) -
Upgraded LauePt4 for rapid recognition and fitting of Laue patterns from crystals with unknown orientations
por: Huang, Vincent W., et al.
Publicado: (2023)