Cargando…
Pedestrian exposure to black carbon and PM(2.5) emissions in urban hot spots: new findings using mobile measurement techniques and flexible Bayesian regression models
BACKGROUND: Data from extensive mobile measurements (MM) of air pollutants provide spatially resolved information on pedestrians’ exposure to particulate matter (black carbon (BC) and PM(2.5) mass concentrations). OBJECTIVE: We present a distributional regression model in a Bayesian framework that e...
Autores principales: | Alas, Honey Dawn, Stöcker, Almond, Umlauf, Nikolaus, Senaweera, Oshada, Pfeifer, Sascha, Greven, Sonja, Wiedensohler, Alfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349038/ https://www.ncbi.nlm.nih.gov/pubmed/34455418 http://dx.doi.org/10.1038/s41370-021-00379-5 |
Ejemplares similares
-
Bayesian Gaussian distributional regression models for more efficient norm estimation
por: Voncken, Lieke, et al.
Publicado: (2020) -
Bayesian Estimation-Based Pedestrian Tracking in Microcells
por: Taniguchi, Yoshiaki, et al.
Publicado: (2013) -
Hierarchical Bayesian spatial models for alcohol availability, drug "hot spots" and violent crime
por: Zhu, Li, et al.
Publicado: (2006) -
Pedestrian detection algorithms using shearlets
por: Pfeifer, Lienhard
Publicado: (2019) -
HotSpot Wizard: a web server for identification of hot spots in protein engineering
por: Pavelka, Antonin, et al.
Publicado: (2009)