Cargando…
Self-supervised deep learning encodes high-resolution features of protein subcellular localization
Explaining the diversity and complexity of protein localization is essential to fully understand cellular architecture. Here we present cytoself, a deep-learning approach for fully self-supervised protein localization profiling and clustering. Cytoself leverages a self-supervised training scheme tha...
Autores principales: | Kobayashi, Hirofumi, Cheveralls, Keith C., Leonetti, Manuel D., Royer, Loic A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349041/ https://www.ncbi.nlm.nih.gov/pubmed/35879608 http://dx.doi.org/10.1038/s41592-022-01541-z |
Ejemplares similares
-
Semi-supervised protein subcellular localization
por: Xu, Qian, et al.
Publicado: (2009) -
Prediction of LncRNA Subcellular Localization with Deep Learning from Sequence Features
por: Gudenas, Brian L., et al.
Publicado: (2018) -
Self-Supervised Variational Auto-Encoders
por: Gatopoulos, Ioannis, et al.
Publicado: (2021) -
Deep Supervised Learning Using Local Errors
por: Mostafa, Hesham, et al.
Publicado: (2018) -
Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models
por: Caragea, Cornelia, et al.
Publicado: (2010)