Cargando…
Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data
A rapid response to global infectious disease outbreaks is crucial to protect public health. Ex ante information on the spatial probability distribution of early infections can guide governments to better target protection efforts. We propose a two‐stage statistical approach to spatially map the ex...
Autores principales: | Seufert, Jacqueline D., Python, Andre, Weisser, Christoph, Cisneros, Elías, Kis‐Katos, Krisztina, Kneib, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9350309/ https://www.ncbi.nlm.nih.gov/pubmed/35942194 http://dx.doi.org/10.1111/rssa.12866 |
Ejemplares similares
-
An iterative topic model filtering framework for short and noisy user-generated data: analyzing conspiracy theories on twitter
por: Kant, Gillian, et al.
Publicado: (2022) -
The impact of co-national networks on asylum seekers’ employment: Quasi-experimental evidence from Germany
por: Stips, Felix, et al.
Publicado: (2020) -
Mapping the prevalence of severe acute malnutrition in Papua, Indonesia by using geostatistical models
por: Jasper, Paul, et al.
Publicado: (2022) -
Mapping, Bayesian Geostatistical Analysis and Spatial Prediction of Lymphatic Filariasis Prevalence in Africa
por: Slater, Hannah, et al.
Publicado: (2013) -
Testing Sentinel-1 SAR Interferometry Data for Airport Runway Monitoring: A Geostatistical Analysis
por: Gagliardi, Valerio, et al.
Publicado: (2021)