Cargando…

Evaluation of fixed-panel, multicolour ClearLLab 10C at an academic flow cytometry laboratory in Johannesburg, South Africa

BACKGROUND: Flow cytometric immunophenotyping is well established for the diagnosis of haematological neoplasms. New commercially available systems offer fixed, pre-aliquoted multi-parameter analysis to simplify sample preparation and standardise data analysis. OBJECTIVE: The Beckman Coulter (BC) Cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Glencross, Deborah K., Swart, Leanne, Pretorius, Melanie, Lawrie, Denise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AOSIS 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9350555/
https://www.ncbi.nlm.nih.gov/pubmed/35937760
http://dx.doi.org/10.4102/ajlm.v11i1.1458
Descripción
Sumario:BACKGROUND: Flow cytometric immunophenotyping is well established for the diagnosis of haematological neoplasms. New commercially available systems offer fixed, pre-aliquoted multi-parameter analysis to simplify sample preparation and standardise data analysis. OBJECTIVE: The Beckman Coulter (BC) ClearLLab™ 10C (4-tube) system was evaluated against an existing laboratory developed test (LDT). METHODS: Peripheral blood and bone marrow aspirates (n = 101), tested between August 2019 and November 2019 at an academic pathology laboratory in Johannesburg, South Africa, were analysed. Following daily instrument quality control, samples were prepared for LDT (using > 20 2–4-colour in-house panels and an extensive liquid monoclonal reagent repertoire) or ClearLLab 10C, and respectively analysed using in-house protocols on a Becton Dickinson FACSCalibur, or manufacturer-directed protocols on a BC Navios. Becton Dickinson Paint-a-Gate or BC Kaluza C software facilitated data interpretation. Diagnostic accuracy (concordance) was established by calculating sensitivity and specificity outcomes. RESULTS: Excellent agreement (clinical diagnostic concordance) with 100% specificity and sensitivity was established between LDT and ClearLLab 10C in 67 patients with a haematological neoplasm and 34 participants with no haematological disease. Similar acceptable diagnostic concordance (97%) was noted when comparing ClearLLab 10C to clinicopathological outcomes. Additionally, the ClearLLab 10C panels, analysed with Kaluza C software, enabled simultaneous discrimination of disease and concurrent background myeloid and lymphoid haematological populations, including assessing stages of maturation or sub-populations. CONCLUSION: ClearLLab 10C panels provide excellent agreement to existing LDTs and may reliably be used for immunophenotyping of haematological neoplasms, simplifying and standardising sample preparation and data acquisition.