Cargando…

A pH-independent electrochemical aptamer-based biosensor supports quantitative, real-time measurement in vivo

The development of biosensors capable of achieving accurate and precise molecular measurements in the living body in pH-variable biological environments (e.g. subcellular organelles, biological fluids and organs) plays a significant role in personalized medicine. Because they recapitulate the confor...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shaoguang, Ferrer-Ruiz, Andrés, Dai, Jun, Ramos-Soriano, Javier, Du, Xuewei, Zhu, Man, Zhang, Wanxue, Wang, Yuanyuan, Herranz, M. Ángeles, Jing, Le, Zhang, Zishuo, Li, Hui, Xia, Fan, Martín, Nazario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9350589/
https://www.ncbi.nlm.nih.gov/pubmed/35975161
http://dx.doi.org/10.1039/d2sc02021a
Descripción
Sumario:The development of biosensors capable of achieving accurate and precise molecular measurements in the living body in pH-variable biological environments (e.g. subcellular organelles, biological fluids and organs) plays a significant role in personalized medicine. Because they recapitulate the conformation-linked signaling mechanisms, electrochemical aptamer-based (E-AB) sensors are good candidates to fill this role. However, this class of sensors suffers from a lack of a stable and pH-independent redox reporter to support their utility under pH-variable conditions. Here, in response, we demonstrate the efficiency of an electron donor π-extended tetrathiafulvalene (exTTF) as an excellent candidate (due to its good electrochemical stability and no proton participation in its redox reaction) of pH-independent redox reporters. Its use has allowed improvement of E-AB sensing performance in biological fluids under different pH conditions, achieving high-frequency, real-time molecular measurements in biological samples both in vitro and in the bladders of living rats.