Cargando…

Accumulation of advanced oxidation protein products contributes to age-related impairment of gap junction intercellular communication in osteocytes of male mice

AIMS: Gap junction intercellular communication (GJIC) in osteocytes is impaired by oxidative stress, which is associated with age-related bone loss. Ageing is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, it is still unknown whether AOPP accumulation is inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Tu, Chen, Lai, Siqi, Huang, Zhiwei, Cai, Guixing, Zhao, Kai, Gao, Jiawen, Wu, Zhiyong, Zhong, Zhaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The British Editorial Society of Bone & Joint Surgery 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9350704/
https://www.ncbi.nlm.nih.gov/pubmed/35775164
http://dx.doi.org/10.1302/2046-3758.117.BJR-2021-0554.R2
Descripción
Sumario:AIMS: Gap junction intercellular communication (GJIC) in osteocytes is impaired by oxidative stress, which is associated with age-related bone loss. Ageing is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, it is still unknown whether AOPP accumulation is involved in the impairment of osteocytes’ GJIC. This study aims to investigate the effect of AOPP accumulation on osteocytes’ GJIC in aged male mice and its mechanism. METHODS: Changes in AOPP levels, expression of connexin43 (Cx43), osteocyte network, and bone mass were detected in 18-month-old and three-month-old male mice. Cx43 expression, GJIC function, mitochondria membrane potential, reactive oxygen species (ROS) levels, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation were detected in murine osteocyte-like cells (MLOY4 cells) treated with AOPPs. The Cx43 expression, osteocyte network, bone mass, and mechanical properties were detected in three-month-old mice treated with AOPPs for 12 weeks. RESULTS: The AOPP levels were increased in aged mice and correlated with degeneration of osteocyte network, loss of bone mass, and decreased Cx43 expression. AOPP intervention induced NADPH oxidase activation and mitochondrial dysfunction, triggered ROS generation, reduced Cx43 expression, and ultimately impaired osteocytes’ GJIC, which were ameliorated by NADPH oxidase inhibitor apocynin, mitochondria-targeted superoxide dismutase mimetic (mito-TEMPO), and ROS scavenger N-acetyl cysteine. Chronic AOPP loading accelerated the degradation of osteocyte networks and decreased Cx43 expression, resulting in deterioration of bone mass and mechanical properties in vivo. CONCLUSION: Our study suggests that AOPP accumulation contributes to age-related impairment of GJIC in osteocytes of male mice, which may be part of the pathogenic mechanism responsible for bone loss during ageing. Cite this article: Bone Joint Res 2022;11(7):413–425.