Cargando…

Assessment of the stream invertebrate [Formula: see text] ‐diversity along an elevation gradient using a bidimensional null model analysis

[Formula: see text] ‐Diversity, commonly defined as the compositional variation among localities that links local diversity (α‐diversity) and regional diversity (γ‐diversity), can arise from two different ecological phenomena, namely the spatial species turnover (i.e., species replacement) and the n...

Descripción completa

Detalles Bibliográficos
Autores principales: Timoner, Pablo, Marle, Pierre, Castella, Emmanuel, Lehmann, Anthony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9350985/
https://www.ncbi.nlm.nih.gov/pubmed/35949529
http://dx.doi.org/10.1002/ece3.9135
_version_ 1784762338586394624
author Timoner, Pablo
Marle, Pierre
Castella, Emmanuel
Lehmann, Anthony
author_facet Timoner, Pablo
Marle, Pierre
Castella, Emmanuel
Lehmann, Anthony
author_sort Timoner, Pablo
collection PubMed
description [Formula: see text] ‐Diversity, commonly defined as the compositional variation among localities that links local diversity (α‐diversity) and regional diversity (γ‐diversity), can arise from two different ecological phenomena, namely the spatial species turnover (i.e., species replacement) and the nestedness of assemblages (i.e., species loss). However, any assessment that does not account for stochasticity in community assembly could be biased and misinform conservation management. In this study, we aimed to provide a better understanding of the overall ecological phenomena underlying stream [Formula: see text] ‐diversity along elevation gradients and to contribute to the rich debate on null model approaches to identify nonrandom patterns in the distribution of taxa. Based on presence‐absence data of 78 stream invertebrate families from 309 sites located in the Swiss Alpine region, we analyzed the effect size of nonrandom spatial distribution of stream invertebrates on the [Formula: see text] ‐diversity and its two components (i.e., turnover and nestedness). We used a modeling framework that allows exploring the complete range of existing algorithms used in null model analysis and assessing how distribution patterns vary according to an array of possible ecological assumptions. Overall, the turnover of stream invertebrates and the nestedness of assemblages were significantly lower and higher, respectively, than the ones expected by chance. This pattern increased with elevation, and the consistent trend observed along the altitudinal gradient, even in the most conservative analysis, strengthened our findings. Our study suggests that deterministic distribution of stream invertebrates in the Swiss Alpine region is significantly driven by differential dispersal capacity and environmental stress gradients. As long as the ecological assumptions for constructing the null models and their implications are acknowledged, we believe that they still represent useful tools to measure the effect size of nonrandom spatial distribution of taxa on [Formula: see text] ‐diversity.
format Online
Article
Text
id pubmed-9350985
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93509852022-08-09 Assessment of the stream invertebrate [Formula: see text] ‐diversity along an elevation gradient using a bidimensional null model analysis Timoner, Pablo Marle, Pierre Castella, Emmanuel Lehmann, Anthony Ecol Evol Research Articles [Formula: see text] ‐Diversity, commonly defined as the compositional variation among localities that links local diversity (α‐diversity) and regional diversity (γ‐diversity), can arise from two different ecological phenomena, namely the spatial species turnover (i.e., species replacement) and the nestedness of assemblages (i.e., species loss). However, any assessment that does not account for stochasticity in community assembly could be biased and misinform conservation management. In this study, we aimed to provide a better understanding of the overall ecological phenomena underlying stream [Formula: see text] ‐diversity along elevation gradients and to contribute to the rich debate on null model approaches to identify nonrandom patterns in the distribution of taxa. Based on presence‐absence data of 78 stream invertebrate families from 309 sites located in the Swiss Alpine region, we analyzed the effect size of nonrandom spatial distribution of stream invertebrates on the [Formula: see text] ‐diversity and its two components (i.e., turnover and nestedness). We used a modeling framework that allows exploring the complete range of existing algorithms used in null model analysis and assessing how distribution patterns vary according to an array of possible ecological assumptions. Overall, the turnover of stream invertebrates and the nestedness of assemblages were significantly lower and higher, respectively, than the ones expected by chance. This pattern increased with elevation, and the consistent trend observed along the altitudinal gradient, even in the most conservative analysis, strengthened our findings. Our study suggests that deterministic distribution of stream invertebrates in the Swiss Alpine region is significantly driven by differential dispersal capacity and environmental stress gradients. As long as the ecological assumptions for constructing the null models and their implications are acknowledged, we believe that they still represent useful tools to measure the effect size of nonrandom spatial distribution of taxa on [Formula: see text] ‐diversity. John Wiley and Sons Inc. 2022-08-04 /pmc/articles/PMC9350985/ /pubmed/35949529 http://dx.doi.org/10.1002/ece3.9135 Text en © 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Timoner, Pablo
Marle, Pierre
Castella, Emmanuel
Lehmann, Anthony
Assessment of the stream invertebrate [Formula: see text] ‐diversity along an elevation gradient using a bidimensional null model analysis
title Assessment of the stream invertebrate [Formula: see text] ‐diversity along an elevation gradient using a bidimensional null model analysis
title_full Assessment of the stream invertebrate [Formula: see text] ‐diversity along an elevation gradient using a bidimensional null model analysis
title_fullStr Assessment of the stream invertebrate [Formula: see text] ‐diversity along an elevation gradient using a bidimensional null model analysis
title_full_unstemmed Assessment of the stream invertebrate [Formula: see text] ‐diversity along an elevation gradient using a bidimensional null model analysis
title_short Assessment of the stream invertebrate [Formula: see text] ‐diversity along an elevation gradient using a bidimensional null model analysis
title_sort assessment of the stream invertebrate [formula: see text] ‐diversity along an elevation gradient using a bidimensional null model analysis
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9350985/
https://www.ncbi.nlm.nih.gov/pubmed/35949529
http://dx.doi.org/10.1002/ece3.9135
work_keys_str_mv AT timonerpablo assessmentofthestreaminvertebrateformulaseetextdiversityalonganelevationgradientusingabidimensionalnullmodelanalysis
AT marlepierre assessmentofthestreaminvertebrateformulaseetextdiversityalonganelevationgradientusingabidimensionalnullmodelanalysis
AT castellaemmanuel assessmentofthestreaminvertebrateformulaseetextdiversityalonganelevationgradientusingabidimensionalnullmodelanalysis
AT lehmannanthony assessmentofthestreaminvertebrateformulaseetextdiversityalonganelevationgradientusingabidimensionalnullmodelanalysis