Cargando…
Integrating concept of pharmacophore with graph neural networks for chemical property prediction and interpretation
Recently, graph neural networks (GNNs) have revolutionized the field of chemical property prediction and achieved state-of-the-art results on benchmark data sets. Compared with the traditional descriptor- and fingerprint-based QSAR models, GNNs can learn task related representations, which completel...
Autores principales: | Kong, Yue, Zhao, Xiaoman, Liu, Ruizi, Yang, Zhenwu, Yin, Hongyan, Zhao, Bowen, Wang, Jinling, Qin, Bingjie, Yan, Aixia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351086/ https://www.ncbi.nlm.nih.gov/pubmed/35927691 http://dx.doi.org/10.1186/s13321-022-00634-3 |
Ejemplares similares
-
Hierarchical Graph Representation of Pharmacophore Models
por: Arthur, Garon, et al.
Publicado: (2020) -
Towards a partial order graph for interactive pharmacophore exploration: extraction of pharmacophores activity delta
por: Lehembre, Etienne, et al.
Publicado: (2023) -
Visualization of Topological Pharmacophore Space with
Graph Edit Distance
por: Nakano, Hiroshi, et al.
Publicado: (2022) -
Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases
por: Kaserer, Teresa, et al.
Publicado: (2015) -
Pharmacophoric-constrained heterogeneous graph transformer model for molecular property prediction
por: Jiang, Yinghui, et al.
Publicado: (2023)