Cargando…
A simple pooling method for variable selection in multiply imputed datasets outperformed complex methods
BACKGROUND: For the development of prognostic models, after multiple imputation, variable selection is advised to be applied from the pooled model. The aim of this study is to evaluate by using a simulation study and practical data example the performance of four different pooling methods for variab...
Autores principales: | Panken, A. M., Heymans, M. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351113/ https://www.ncbi.nlm.nih.gov/pubmed/35927610 http://dx.doi.org/10.1186/s12874-022-01693-8 |
Ejemplares similares
-
A comparison of model selection methods for prediction in the presence of multiply imputed data
por: Thao, Le Thi Phuong, et al.
Publicado: (2018) -
Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: a comparative study
por: Kokla, Marietta, et al.
Publicado: (2019) -
Parametric methods outperformed non-parametric methods in comparisons of discrete numerical variables
por: Fagerland, Morten W, et al.
Publicado: (2011) -
Differential Network Analysis with Multiply Imputed Lipidomic Data
por: Kujala, Maiju, et al.
Publicado: (2015) -
Methods of tagSNP selection and other variables affecting imputation accuracy in swine
por: Badke, Yvonne M, et al.
Publicado: (2013)