Cargando…
MOSCATO: a supervised approach for analyzing multi-Omic single-Cell data
BACKGROUND: Advancements in genomic sequencing continually improve personalized medicine, and recent breakthroughs generate multimodal data on a cellular level. We introduce MOSCATO, a technique for selecting features across multimodal single-cell datasets that relate to clinical outcomes. We summar...
Autores principales: | Towle-Miller, Lorin M., Miecznikowski, Jeffrey C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351124/ https://www.ncbi.nlm.nih.gov/pubmed/35927608 http://dx.doi.org/10.1186/s12864-022-08759-3 |
Ejemplares similares
-
SuMO-Fil: Supervised multi-omic filtering prior to performing network analysis
por: Towle-Miller, Lorin M., et al.
Publicado: (2021) -
Balanced Functional Module Detection in genomic data
por: Tritchler, David, et al.
Publicado: (2021) -
Drawing Links from Transcriptome to Metabolites: The Evolution of Aroma in the Ripening Berry of Moscato Bianco (Vitis vinifera L.)
por: Costantini, Laura, et al.
Publicado: (2017) -
LinkedOmics: analyzing multi-omics data within and across 32 cancer types
por: Vasaikar, Suhas V, et al.
Publicado: (2018) -
Editorial: Integrative Approaches to Analyze Cancer Based on Multi‐Omics
por: Shen, Sipeng
Publicado: (2022)