Cargando…
BASS: multi-scale and multi-sample analysis enables accurate cell type clustering and spatial domain detection in spatial transcriptomic studies
Spatial transcriptomic studies are reaching single-cell spatial resolution, with data often collected from multiple tissue sections. Here, we present a computational method, BASS, that enables multi-scale and multi-sample analysis for single-cell resolution spatial transcriptomics. BASS performs cel...
Autores principales: | Li, Zheng, Zhou, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351148/ https://www.ncbi.nlm.nih.gov/pubmed/35927760 http://dx.doi.org/10.1186/s13059-022-02734-7 |
Ejemplares similares
-
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies
por: Zhu, Jiaqiang, et al.
Publicado: (2021) -
SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics
por: Zhu, Jiaqiang, et al.
Publicado: (2023) -
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data
por: Zhang, Xiao, et al.
Publicado: (2023)