Cargando…
Improving GWAS discovery and genomic prediction accuracy in biobank data
Genetically informed, deep-phenotyped biobanks are an important research resource and it is imperative that the most powerful, versatile, and efficient analysis approaches are used. Here, we apply our recently developed Bayesian grouped mixture of regressions model (GMRM) in the UK and Estonian Biob...
Autores principales: | Orliac, Etienne J., Trejo Banos, Daniel, Ojavee, Sven E., Läll, Kristi, Mägi, Reedik, Visscher, Peter M., Robinson, Matthew R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351350/ https://www.ncbi.nlm.nih.gov/pubmed/35905320 http://dx.doi.org/10.1073/pnas.2121279119 |
Ejemplares similares
-
Genomic architecture and prediction of censored time-to-event phenotypes with a Bayesian genome-wide analysis
por: Ojavee, Sven E., et al.
Publicado: (2021) -
Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
por: Patxot, Marion, et al.
Publicado: (2021) -
Genetic insights into the age-specific biological mechanisms governing human ovarian aging
por: Ojavee, Sven E., et al.
Publicado: (2023) -
Liability-scale heritability estimation for biobank studies of low-prevalence disease
por: Ojavee, Sven E., et al.
Publicado: (2022) -
GWAS meta-analyses clarify the genetics of cervical phenotypes and inform risk stratification for cervical cancer
por: Koel, Mariann, et al.
Publicado: (2023)