Cargando…

Vibrational couplings between protein and cofactor in bacterial phytochrome Agp1 revealed by 2D-IR spectroscopy

Phytochromes are ubiquitous photoreceptor proteins that undergo a significant refolding of secondary structure in response to initial photoisomerization of the chromophoric group. This process is important for the signal transduction through the protein and thus its regulatory function in different...

Descripción completa

Detalles Bibliográficos
Autores principales: Buhrke, David, Michael, Norbert, Hamm, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351469/
https://www.ncbi.nlm.nih.gov/pubmed/35905324
http://dx.doi.org/10.1073/pnas.2206400119
Descripción
Sumario:Phytochromes are ubiquitous photoreceptor proteins that undergo a significant refolding of secondary structure in response to initial photoisomerization of the chromophoric group. This process is important for the signal transduction through the protein and thus its regulatory function in different organisms. Here, we employ two-dimensional infrared absorption (2D-IR) spectroscopy, an ultrafast spectroscopic technique that is sensitive to vibrational couplings, to study the photoreaction of bacterial phytochrome Agp1. By calculating difference spectra with respect to the photoactivation, we are able to isolate sharp difference cross-peaks that report on local changes in vibrational couplings between different sites of the chromophore and the protein. These results indicate inter alia that a dipole coupling between the chromophore and the so-called tongue region plays a role in stabilizing the protein in the light-activated state.