Cargando…
A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy
Somatic mutations are accumulated in normal human tissues with aging and exposure to carcinogens. If we can accurately count any passenger mutations in any single DNA molecule, since their quantity is much larger than driver mutations, we can sensitively detect mutation accumulation in polyclonal no...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351471/ https://www.ncbi.nlm.nih.gov/pubmed/35895679 http://dx.doi.org/10.1073/pnas.2123241119 |
_version_ | 1784762450946555904 |
---|---|
author | Ueda, Sho Yamashita, Satoshi Nakajima, Miho Kumamoto, Tadashi Ogawa, Chitose Liu, Yu-yu Yamada, Harumi Kubo, Emi Hattori, Naoko Takeshima, Hideyuki Wakabayashi, Mika Iida, Naoko Shiraishi, Yuichi Noguchi, Masayuki Sato, Yukio Ushijima, Toshikazu |
author_facet | Ueda, Sho Yamashita, Satoshi Nakajima, Miho Kumamoto, Tadashi Ogawa, Chitose Liu, Yu-yu Yamada, Harumi Kubo, Emi Hattori, Naoko Takeshima, Hideyuki Wakabayashi, Mika Iida, Naoko Shiraishi, Yuichi Noguchi, Masayuki Sato, Yukio Ushijima, Toshikazu |
author_sort | Ueda, Sho |
collection | PubMed |
description | Somatic mutations are accumulated in normal human tissues with aging and exposure to carcinogens. If we can accurately count any passenger mutations in any single DNA molecule, since their quantity is much larger than driver mutations, we can sensitively detect mutation accumulation in polyclonal normal tissues. Duplex sequencing, which tags both DNA strands in one DNA molecule, enables accurate count of such mutations, but requires a very large number of sequencing reads for each single sample of human-genome size. Here, we reduced the genome size to 1/90 using the BamHI restriction enzyme and established a cost-effective pipeline. The enzymatically cleaved and optimal sequencing (EcoSeq) method was able to count somatic mutations in a single DNA molecule with a sensitivity of as low as 3 × 10(−8) per base pair (bp), as assessed by measuring artificially prepared mutations. Taking advantages of EcoSeq, we analyzed normal peripheral blood cells of pediatric sarcoma patients who received chemotherapy (n = 10) and those who did not (n = 10). The former had a mutation frequency of 31.2 ± 13.4 × 10(−8) per base pair while the latter had 9.0 ± 4.5 × 10(−8) per base pair (P < 0.001). The increase in mutation frequency was confirmed by analysis of the same patients before and after chemotherapy, and increased mutation frequencies persisted 46 to 64 mo after chemotherapy, indicating that the mutation accumulation constitutes a risk of secondary leukemia. EcoSeq has the potential to reveal accumulation of somatic mutations and exposure to environmental factors in any DNA samples and will contribute to cancer risk estimation. |
format | Online Article Text |
id | pubmed-9351471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-93514712023-01-27 A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy Ueda, Sho Yamashita, Satoshi Nakajima, Miho Kumamoto, Tadashi Ogawa, Chitose Liu, Yu-yu Yamada, Harumi Kubo, Emi Hattori, Naoko Takeshima, Hideyuki Wakabayashi, Mika Iida, Naoko Shiraishi, Yuichi Noguchi, Masayuki Sato, Yukio Ushijima, Toshikazu Proc Natl Acad Sci U S A Biological Sciences Somatic mutations are accumulated in normal human tissues with aging and exposure to carcinogens. If we can accurately count any passenger mutations in any single DNA molecule, since their quantity is much larger than driver mutations, we can sensitively detect mutation accumulation in polyclonal normal tissues. Duplex sequencing, which tags both DNA strands in one DNA molecule, enables accurate count of such mutations, but requires a very large number of sequencing reads for each single sample of human-genome size. Here, we reduced the genome size to 1/90 using the BamHI restriction enzyme and established a cost-effective pipeline. The enzymatically cleaved and optimal sequencing (EcoSeq) method was able to count somatic mutations in a single DNA molecule with a sensitivity of as low as 3 × 10(−8) per base pair (bp), as assessed by measuring artificially prepared mutations. Taking advantages of EcoSeq, we analyzed normal peripheral blood cells of pediatric sarcoma patients who received chemotherapy (n = 10) and those who did not (n = 10). The former had a mutation frequency of 31.2 ± 13.4 × 10(−8) per base pair while the latter had 9.0 ± 4.5 × 10(−8) per base pair (P < 0.001). The increase in mutation frequency was confirmed by analysis of the same patients before and after chemotherapy, and increased mutation frequencies persisted 46 to 64 mo after chemotherapy, indicating that the mutation accumulation constitutes a risk of secondary leukemia. EcoSeq has the potential to reveal accumulation of somatic mutations and exposure to environmental factors in any DNA samples and will contribute to cancer risk estimation. National Academy of Sciences 2022-07-27 2022-08-02 /pmc/articles/PMC9351471/ /pubmed/35895679 http://dx.doi.org/10.1073/pnas.2123241119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Ueda, Sho Yamashita, Satoshi Nakajima, Miho Kumamoto, Tadashi Ogawa, Chitose Liu, Yu-yu Yamada, Harumi Kubo, Emi Hattori, Naoko Takeshima, Hideyuki Wakabayashi, Mika Iida, Naoko Shiraishi, Yuichi Noguchi, Masayuki Sato, Yukio Ushijima, Toshikazu A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy |
title | A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy |
title_full | A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy |
title_fullStr | A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy |
title_full_unstemmed | A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy |
title_short | A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy |
title_sort | quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351471/ https://www.ncbi.nlm.nih.gov/pubmed/35895679 http://dx.doi.org/10.1073/pnas.2123241119 |
work_keys_str_mv | AT uedasho aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT yamashitasatoshi aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT nakajimamiho aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT kumamototadashi aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT ogawachitose aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT liuyuyu aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT yamadaharumi aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT kuboemi aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT hattorinaoko aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT takeshimahideyuki aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT wakabayashimika aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT iidanaoko aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT shiraishiyuichi aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT noguchimasayuki aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT satoyukio aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT ushijimatoshikazu aquantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT uedasho quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT yamashitasatoshi quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT nakajimamiho quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT kumamototadashi quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT ogawachitose quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT liuyuyu quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT yamadaharumi quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT kuboemi quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT hattorinaoko quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT takeshimahideyuki quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT wakabayashimika quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT iidanaoko quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT shiraishiyuichi quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT noguchimasayuki quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT satoyukio quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy AT ushijimatoshikazu quantificationmethodofsomaticmutationsinnormaltissuesandtheiraccumulationinpediatricpatientswithchemotherapy |