Cargando…
Measuring Electrical Responses during Acute Exposure of Roots and Rhizoids of Plants to Compounds Using a Flow-Through System
Monitoring electrical signals in plants allows the examination of their acute and chronic physiological changes and responses to stimuli. Understanding how plant roots/rhizoids respond to chemical cues in their environment will provide insight into how these structures acquire resources. Chronic exp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351672/ https://www.ncbi.nlm.nih.gov/pubmed/35893588 http://dx.doi.org/10.3390/mps5040062 |
_version_ | 1784762484956069888 |
---|---|
author | Cooper, Robin Lewis Thomas, Matthew A. Vascassenno, Rachael M. Brock, Kaitlyn E. McLetchie, David Nicholas |
author_facet | Cooper, Robin Lewis Thomas, Matthew A. Vascassenno, Rachael M. Brock, Kaitlyn E. McLetchie, David Nicholas |
author_sort | Cooper, Robin Lewis |
collection | PubMed |
description | Monitoring electrical signals in plants allows the examination of their acute and chronic physiological changes and responses to stimuli. Understanding how plant roots/rhizoids respond to chemical cues in their environment will provide insight into how these structures acquire resources. Chronic exposure to L-glutamate alters root growth and is known to alter Ca(2+) flux inside roots. The ionic flux can be detected by electrical changes. A rapid and relatively easy approach is presented to screen the electrical sensitivity of roots/rhizoids to compounds such as amino acids and known agonists/antagonists to receptors and ion channels. The approach uses a background-flow system of basal salt or water; then, the administered compounds are added to the roots/rhizoids while monitoring their electrical responses. As a proof of concept, the response to flow-through of glutamate (1 mM) was targeted at the root/rhizoids of three plants (Arabidopsis thaliana, Pisum sativum and Marchantia inflexa). Both Arabidopsis thaliana and Pisum sativum produced rapid depolarization upon exposure to glutamate, while M. inflexa did not show an electrical response. In some experiments, simultaneous recordings with impedance measures for acute changes and glass electrodes for chronic electrical potential changes were used. The effect of potassium chloride (300 mM) as a depolarizing stimulus produced responses in both P. sativum and M. inflexa. The protocol presented can be used to screen various compounds in a relatively rapid manner for responsiveness by the roots/rhizoids of plants. |
format | Online Article Text |
id | pubmed-9351672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93516722022-08-05 Measuring Electrical Responses during Acute Exposure of Roots and Rhizoids of Plants to Compounds Using a Flow-Through System Cooper, Robin Lewis Thomas, Matthew A. Vascassenno, Rachael M. Brock, Kaitlyn E. McLetchie, David Nicholas Methods Protoc Protocol Monitoring electrical signals in plants allows the examination of their acute and chronic physiological changes and responses to stimuli. Understanding how plant roots/rhizoids respond to chemical cues in their environment will provide insight into how these structures acquire resources. Chronic exposure to L-glutamate alters root growth and is known to alter Ca(2+) flux inside roots. The ionic flux can be detected by electrical changes. A rapid and relatively easy approach is presented to screen the electrical sensitivity of roots/rhizoids to compounds such as amino acids and known agonists/antagonists to receptors and ion channels. The approach uses a background-flow system of basal salt or water; then, the administered compounds are added to the roots/rhizoids while monitoring their electrical responses. As a proof of concept, the response to flow-through of glutamate (1 mM) was targeted at the root/rhizoids of three plants (Arabidopsis thaliana, Pisum sativum and Marchantia inflexa). Both Arabidopsis thaliana and Pisum sativum produced rapid depolarization upon exposure to glutamate, while M. inflexa did not show an electrical response. In some experiments, simultaneous recordings with impedance measures for acute changes and glass electrodes for chronic electrical potential changes were used. The effect of potassium chloride (300 mM) as a depolarizing stimulus produced responses in both P. sativum and M. inflexa. The protocol presented can be used to screen various compounds in a relatively rapid manner for responsiveness by the roots/rhizoids of plants. MDPI 2022-07-18 /pmc/articles/PMC9351672/ /pubmed/35893588 http://dx.doi.org/10.3390/mps5040062 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Protocol Cooper, Robin Lewis Thomas, Matthew A. Vascassenno, Rachael M. Brock, Kaitlyn E. McLetchie, David Nicholas Measuring Electrical Responses during Acute Exposure of Roots and Rhizoids of Plants to Compounds Using a Flow-Through System |
title | Measuring Electrical Responses during Acute Exposure of Roots and Rhizoids of Plants to Compounds Using a Flow-Through System |
title_full | Measuring Electrical Responses during Acute Exposure of Roots and Rhizoids of Plants to Compounds Using a Flow-Through System |
title_fullStr | Measuring Electrical Responses during Acute Exposure of Roots and Rhizoids of Plants to Compounds Using a Flow-Through System |
title_full_unstemmed | Measuring Electrical Responses during Acute Exposure of Roots and Rhizoids of Plants to Compounds Using a Flow-Through System |
title_short | Measuring Electrical Responses during Acute Exposure of Roots and Rhizoids of Plants to Compounds Using a Flow-Through System |
title_sort | measuring electrical responses during acute exposure of roots and rhizoids of plants to compounds using a flow-through system |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351672/ https://www.ncbi.nlm.nih.gov/pubmed/35893588 http://dx.doi.org/10.3390/mps5040062 |
work_keys_str_mv | AT cooperrobinlewis measuringelectricalresponsesduringacuteexposureofrootsandrhizoidsofplantstocompoundsusingaflowthroughsystem AT thomasmatthewa measuringelectricalresponsesduringacuteexposureofrootsandrhizoidsofplantstocompoundsusingaflowthroughsystem AT vascassennorachaelm measuringelectricalresponsesduringacuteexposureofrootsandrhizoidsofplantstocompoundsusingaflowthroughsystem AT brockkaitlyne measuringelectricalresponsesduringacuteexposureofrootsandrhizoidsofplantstocompoundsusingaflowthroughsystem AT mcletchiedavidnicholas measuringelectricalresponsesduringacuteexposureofrootsandrhizoidsofplantstocompoundsusingaflowthroughsystem |