Cargando…
Disentangling personalized treatment effects from “time-of-the-day” confounding in mobile health studies
Ideally, a patient’s response to medication can be monitored by measuring changes in performance of some activity. In observational studies, however, any detected association between treatment (“on-medication” vs “off-medication”) and the outcome (performance in the activity) might be due to confoun...
Autores principales: | Chaibub Neto, Elias, Perumal, Thanneer M., Pratap, Abhishek, Tediarjo, Aryton, Bot, Brian M., Mangravite, Lara, Omberg, Larsson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352058/ https://www.ncbi.nlm.nih.gov/pubmed/35925980 http://dx.doi.org/10.1371/journal.pone.0271766 |
Ejemplares similares
-
Detecting the impact of subject characteristics on machine learning-based diagnostic applications
por: Chaibub Neto, Elias, et al.
Publicado: (2019) -
Data Science Approaches for Effective Use of Mobile Device–Based Collection of Real‐World Data
por: Omberg, Larsson, et al.
Publicado: (2020) -
Using instrumental variables to disentangle treatment and placebo effects in blinded and unblinded randomized clinical trials influenced by unmeasured confounders
por: Chaibub Neto, Elias
Publicado: (2016) -
Evaluating the Utility of Smartphone-Based Sensor Assessments in Persons With Multiple Sclerosis in the Real-World Using an App (elevateMS): Observational, Prospective Pilot Digital Health Study
por: Pratap, Abhishek, et al.
Publicado: (2020) -
Identifying and ranking potential driver genes of Alzheimer’s disease using multiview evidence aggregation
por: Mukherjee, Sumit, et al.
Publicado: (2019)